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Overview of Signals and Systems 
 

Chapter Intended Learning Outcomes: 
 
(i) Get basic concepts of signals and systems 
 
(ii) Realize that signals and systems arise in our daily life 
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What is Signal? 
 

 Anything that conveys information, e.g.,  
 

 Speech  
 

 Electrocardiogram (ECG) 
 

 Radar pulse 
 

 DNA sequence 
 

 Stock price 
 

 Code division multiple access (CDMA) signal 
 

 Image 
 

 Video 
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Fig.1.1: Speech 
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Fig.1.2: ECG 

0 0.5 1 1.5 2 2.5
-50

0

50

100

150

200

250

time (s)

E
C

G



H. C. So                                                                        Page 5                                         Semester B 2016-2017 

 
Fig.1.3: Transmitted & received radar waveforms:  &  
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Radar 
transceiver 
system  

 
 

 

Fig.1.4: Radar ranging 
 

Given the signal propagation speed, denoted by , the time 
delay  is related to  as: 
 

                                           (1.1) 
 

Hence radar pulse contains the object range information. 
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 Can be a function of one, two or three independent 
variables, e.g., speech is 1-D signal, function of time; 
image is 2-D, function of space; wind is 3-D, function of 
latitude, longitude and elevation. 

 
 3 types of signals that are functions of time: 
 

 Continuous-time (analog) : defined on a continuous 
range of time , amplitude can be any value. 

 

 Discrete-time  (sampled): defined only at discrete 
instants of time , amplitude can be 
any value. 

 

 Digital (quantized) : both time and amplitude are 
discrete, i.e., it is defined only at  and 
amplitude is confined to a finite set of numbers. 
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 Fig. 1.5: Relationships between ,  and  
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 at  is close to 2 and . 
 

 at  and  . 
 
Using 4-bit representation,  and ,  and 
in general, the value of  is restricted to be an integer 
between  and  according to the two’s complement 
representation.  
 
In this course, we focus on continuous-time and discrete-
time signals. Discrete-time signal is also commonly 
represented by  with  being the time 
index (You can just consider normalizing  in  to be 1).  
 
The digital signal can be considered as discrete-time if the 
quantizer has very high resolution.  
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What is System? 
 

 Mathematical model or abstraction of a physical process 
that relates input to output: 

  

                        

system
input output

 

Fig.1.6: System with input and output 
 
 It operates on an input to produce an output, e.g.:  
 

 Grading system: inputs are coursework and examination 
marks, output is grade. 
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 Squaring system: input is 5, then the output is 25. 
 

 Amplifier: input is , then output is . 
 

 Communication system: input to mobile phone is voice, 
output from mobile phone is CDMA signal. 

 

 Noise reduction system: input is a noisy speech, output 
is a noise-reduced speech. 

 

 Feature extraction system: input is , output is . 
 
 An analog system deals with continuous-time input and 

output while a discrete-time system deals discrete-time 
input and output. 

 
 A system can be realized in hardware or software via an 

algorithm. 
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analog system
analog
input

analog
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Fig.1.7: Continuous-time system 

 
 

discrete-time 
system
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Fig.1.8: Discrete-time system 
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Fig.1.9: Hardware system of resistor-capacitor circuit 

 

  

 
Fig.1.10: Pop-art production using an algorithm 
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Fig.1.11: Software system for moving average of Dow Jones  
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What will You Learn? 
 

 Signal representation and characterization, which includes 
generating signals, classifying signal types and properties, 
performing operations on signals. 
 

 System classification and analysis, which includes analysis 
of system stability and causality, understanding the 
importance of impulse response in linear time-invariant 
(LTI) systems. 

 

 Transform tools include Fourier series and Fourier 
transform as well as their applications in signal and LTI 
system analysis, e.g.: a periodic continuous-time signal 

 can be represented as sum of complex exponentials: 
 

                             (1.2) 
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Why Important? 
 

 Signals and systems arise in our daily life, studying it will 
lay a good foundation for you in other relevant/higher-
level courses and to solve real-world problems: 
 

 Generate signals which meet certain specifications, e.g., 
synthesized speech and music. 

 Design systems which produce desired outputs, e.g., a 
system which suppresses noise in the measured data 

 New signal representation for efficient data processing, 
e.g., David Donoho proposed sparse representation 
and obtained the Shaw Prize 2013. 
https://www.youtube.com/watch?v=5wv4grOMgIU 

 
How to Study? 
 

Make sure you have a clear concept and then practice. 

https://www.youtube.com/watch?v=5wv4grOMgIU
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Signals in Time Domain 
 

Chapter Intended Learning Outcomes: 
 
(i)  Classify different types of signals 
 
(ii)  Perform basic operations on signals 
 
(iii) Recognize basic continuous-time and discrete-time 

signals and understand their properties 
 
(iv) Generate and visualize discrete-time signals using 

MATLAB 
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Classification of Signals 
 

There are many ways of classifying signals. Common 
examples are provided as follows. 
 
Continuous-Time versus Discrete-Time 
 

: take a value at every instant of time . 
: defined only at particular instants of time . 

t n

 
Fig. 2.1: Continuous-time versus discrete-time signals 
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Real versus Complex 
 

Real-valued signal means that  or  is real for all  or . 
 

Complex-valued signal means that  or  can be 
decomposed as: 
 

              (2.1) 
 

where  and  represent the real and imaginary parts, 
respectively, while the latter is nonzero, and . 
 

Note that for a complex number , we can also use 
magnitude  and phase  for its representation:  
 

                                                               (2.2) 
and 

                                                                    (2.3) 
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The magnitude can also be computed as: 
 

                                                                                    (2.4) 
where 
                        (2.5) 
 

is the complex conjugate of . 
 

Furthermore, we see that complex signals include real 
signals. 
 
Example 2.1 
Determine if the following signals are real or complex. 
(a)  

(b)  

 

(a)It is real-valued signal as  is real for all . 
(b)It is complex as  has nonzero imaginary component. 
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Periodic versus Aperiodic 
 

 is said to be periodic if there exists  such that 
 

                        (2.6) 
 

for all . The smallest  for which (2.6) holds is called the 
fundamental period. 
 

 is said to be periodic if there exists a positive integer  
such that 
 

                        (2.7) 
 

for all . The smallest  for which (2.7) holds is called the 
fundamental period. 
 
If a signal is not periodic, then it is aperiodic. 
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Example 2.2 
Determine if the following signals are periodic or not. If it is 
periodic, compute the fundamental period. 
(a)  
(b)  

(c)  

(d)  

(e)  
 

(a) A quadratic function should not be periodic. 
 

(b) As cosine function has a period of , we can write: 
 

 
Hence it is periodic with . 
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(c)  is not fulfilled for all  and it is aperiodic. 
 

(d) Again, we can write: 
 

 
 

Hence it is periodic with . 
 

(e)It is aperiodic because we cannot find an integer  to 
fulfil (2.3). 

 
Even versus Odd 
 

A signal is called an even function if 
 

                        (2.8) 
 

A signal is called an odd function if 
 

                     (2.9) 
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Any signal can be represented by a sum of even and odd 
signals: 
 

                    (2.10) 
 

where 
 

              (2.11) 

or 
              (2.12) 
 

Example 2.3 
Determine if the following signals are even or odd. 
(a)  
(b)  
(c)  
(d)  
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(a) It is even because . 
(b) It is odd because . 
 
(c) It is neither odd nor even because: 
 

 
 

which is a linear combination of even and odd functions. 
 
(d) It is neither odd nor even. Applying (2.12) yields: 
 

 
 

 

which are the even and odd components. Note that the 
same result can be easily obtained by inspection. 
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Energy versus Power 
 

Energy of  or  is defined as: 
 

                      (2.13) 

 
If the signal energy is infinite, it is meaningful to use power 
of  or  as the measure, which is defined as: 
 

          (2.14) 

 

Signal power is the time average of signal energy. 
 
Note that for real signal, , while  
for complex signal. 
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A signal is energy signal if , indicating its . 
 

A signal is power signal if , indicating its . 
 
Example 2.4 
Determine if the following signals are energy or power 
signals and then compute their energies or powers. 

(a)  

(b)  
(c)  
 

(a)  only for  and is zero otherwise. Thus it is 
an energy signal. Using (2.13), we get: 
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(b) From Example 2.2, we know that  is periodic with 
. We can just use one period in (2.14): 

 

 
 

Hence it is a periodic signal with power . 
 

(c) . Summing  from  to 
 is infinity and thus it is a power signal with : 
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Basic Signal Operations 
 

Three basic operators on signals are described as follows. 
 

Time Shift 
 

Shift the signal to left or right: 
 

                     (2.15) 
 

If  or  is positive, then it corresponds to time delay while 
it is a time advance for negative  or  

 
Fig. 2.2: Illustration of time shift 
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Time Reversal 
 

Flip the signal around the vertical axis: 
 

                        (2.16) 
 

 
Fig. 2.3: Illustration of time reversal 
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Time Scaling 
 

Linearly stretch or compress the signal: 
 

                          (2.17) 
 

where  means stretch and  means compression. We 
do not discuss  as it is not defined for all time instants. 
 

 
Fig. 2.4: Illustration of time scaling 
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Basic Continuous-Time Signals 
 

Typical examples of continuous-time signals are described 
as follows. 
 

Unit Impulse 
 

The unit impulse  has the following characteristics: 
 

                      (2.18) 
and 

 

                            (2.19) 

 
(2.18) and (2.19) indicate that  has a very large value or 
impulse at . That is,  is not well defined at . 
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Fig. 2.5: Graphical representation of  

 
From (2.18), multiplying a continuous-time signal  by an 
impulse  gives: 
 

                            (2.20) 
 

That is, we only need to care about the value of  at the 
impulse location, namely, . 
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We may consider  as the building block of any 
continuous-time signal, described by the sifting property: 
 

                          (2.21) 
 

That is, imagining  as a sum of infinite impulse functions 
and each with amplitude . 
 
Unit Step 
 

The unit step function  has the form of: 
 

                    (2.22) 

 

As there is a sudden change from 0 to 1 at ,  is not 
well defined. 
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Fig. 2.6: Graphical representation of  
 

 can be expressed in terms of  as: 
 

                   (2.23) 

 
Conversely, we can use  to represent : 
 

                      (2.24) 
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Sinusoid 
 

It is a sine wave of the form: 
 

                             (2.25) 
 

which is characterized by three parameters, amplitude , 
radian frequency  and phase . 
 

 
Fig. 2.7: Sinusoid 
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Rate of oscillation increases with . 
 
Apart from , , the frequency in Hz can be used. 
 
Fundamental period  is determined as: 
 

 
 

                             (2.26) 
 

For the complex-valued case, it has the form of: 
 
 

                             (2.27) 
 

Using the Euler formula: 
 

                             (2.28) 
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It is seen that the real part of (2.27) is (2.25), while the 
imaginary part is  which is also a sinusoid. 
 

A complex sinusoid is also periodic with radian frequency . 
 

According to (2.28), we can obtain: 
 

                             (2.29) 

and 

                             (2.30) 
 

Note that the general form of (2.25) or (2.27) is: 
                             

               (2.31) 

 

which is a sum of  tones. 
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Exponential 
 

For the real-valued case, it has the form: 
 

                             (2.32) 
 

where  and  are real numbers. 

t t

 
 

Fig. 2.8: Real exponential with   
 

With complex  and , (2.32) also represents complex case.  
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Basic Discrete-Time Signals 
 

Typical examples of discrete-time signals are described as 
follows. 
 

Unit Impulse (or Sample) 
 

                             (2.33) 
 

which is similar to  but  is simpler because it is well 
defined for all  while  is not defined at . 
 

Unit Step 
       

                             (2.34) 
 

which is similar to  but  is well defined for all   while 
 is not defined . 



H. C. So                                                                        Page 25                                         Semester B 2016-2017 

 
Fig. 2.9: Unit sample  and unit step  
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 is an important function because it serves as the 
building block of any discrete-time signal : 
                                           

   (2.35) 

 

For example,  can be expressed in terms of  as: 
 

                             (2.36) 

 
Conversely, we can use  to represent : 
     

                             (2.37) 
 
which are analogous to (2.21), (2.23)-(2.24).   
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Sinusoid 
 

For real-valued case, it has the form of: 
 

                             (2.38) 
 

which is characterized by three parameters, amplitude , 
radian frequency  and phase . 
 

(2.38) can be extended to the complex model as: 
  

                             (2.39) 
 
 

The general form of (2.38) or (2.39) is: 
                             

               (2.40) 

 

which is a sum of  sinusoids. 
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Exponential 
 

For the real-valued case, it has the form: 
 

                             (2.41) 
 

where  and  are real numbers. 
 

(2.41) can also represent complex exponential by using 
complex  and . 
 
Introduction to MATLAB  
 
MATLAB stands for ”Matrix Laboratory”.  
 
Interactive matrix-based software for numerical and 
symbolic computation in scientific and engineering 
applications. 
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Its user interface is relatively simple to use, e.g., we can 
use the help command to understand the usage and syntax 
of each MATLAB function. 
 
Together with the availability of numerous toolboxes, there 
are many useful and powerful commands for various 
disciplines. 
 
MathWorks offers MATLAB to C conversion utility. 
 
Similar packages include Maple and Mathematica. 
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Example 2.5 
Use MATLAB to generate a discrete-time sinusoid of the 
form: 
 

 
 

with , ,  and , which has a duration of 
21 samples. 
 

We can generate  by using the following MATLAB code: 
 

N=21;                  %number of samples is 21 
A=1;                   %tone amplitude is 1 
w=0.3;                 %frequency is 0.3 
p=1;                   %phase is 1 
for n=1:N 
x(n)=A*cos(w*(n-1)+p); %time index should be >0 
end 
 

Note that x is a vector and its index should be at least 1. 
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Alternatively, we can also use: 
 

N=21;                  %number of samples is 21 
A=1;                   %tone amplitude is 1 
w=0.3;                 %frequency is 0.3 
p=1;                   %phase is 1 
n=0:N-1;               %define time index vector 
x=A.*cos(w.*n+p);      %first time index is also 1 
 

Both give 
x = 
 

Columns 1 through 7  
 

0.5403 0.2675 -0.0292 -0.3233 -0.5885 -0.8011 -0.9422 
 

Columns 8 through 14  
 

-0.9991 -0.9668 -0.8481 -0.6536 -0.4008 -0.1122 0.1865 
 

Columns 15 through 21  
 

0.4685 0.7087 0.8855 0.9833 0.9932 0.9144 0.7539 
 

Which approach is better? Why? 
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To plot , we can either use the commands stem(x) and 
plot(x.) 
 

If the time index is not specified, the default start time is 
. 

 

Nevertheless, it is easy to include the time index vector in 
the plotting command. 
 

e.g., Using stem to plot  with the correct time index: 
 

n=0:N-1;      %n is vector of time index 
stem(n,x)      %plot x versus n 
 

Similarly, plot(n,x) can be employed to show . 
 
The MATLAB programs for this example are provided as 
ex2_5.m and ex2_5_2.m. 
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Fig. 2.10: Plot of discrete-time sinusoid using stem 
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Fig. 2.11: Plot of discrete-time sinusoid using plot 
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Systems in Time Domain 
 

Chapter Intended Learning Outcomes: 
 
(i)  Classify different types of systems 
 
(ii) Understand the property of convolution and its 

relationship with linear time-invariant system 
 
(iii) Understand the relationship between differential 

equation, difference equation and linear time-
invariant system 

 
(iv)  Perform basic operations in systems 
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System Overview 
 

It can be classified as continuous-time and discrete-time: 
 

continuous-time 
system

discrete-time 
system

 
Fig. 3.1: Continuous-time and discrete-time systems 

 
In a continuous-time (discrete-time) system, the input and 
output are continuous-time (discrete-time) signals. 
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A system is an operator which maps input into output: 
 

                         (3.1) 
 

Systems can be connected/combined to form a 
bigger/overall system, e.g., break down a big task into 
several sub-tasks and each system handles one sub-task. 

System 1

System 2

System 1 System 2

System 1

System 2

Parallel interconnection

Feedback interconnection

Series interconnection

 
Fig. 3.2: Examples of system interconnections 
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Basic System Properties 
 

Memoryless, invertibility, causality, stability, linearity, and 
time-invariance, are described as follows. 
 

Memoryless 
 

A system is memoryless if its output at a given time is 
dependent only on the input at that same time, i.e.,  at 
time  depends only on  at time ;  at time  depends 
only on  at time . 
 

A memoryless system does not have memory to store any 
input values because it just operates on the current input. 
 

If a system is not memoryless, we can call it a system with 
memory. 
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Example 3.1 
Determine if the following systems are memoryless or not 
(a)  

(b)  

 

(a) The system is memoryless because the output at time  
depends only on the input at time . 
 

(b) The system is not memoryless because  also depends 
only on , which is a previous input, and thus it 
needs memory to store  when processing the 
input at time . 

 
Invertibility 
 

A system is invertible if distinct inputs lead to distinct 
outputs, or if an inverse system exists. 
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System 1 System 2

 
 

Fig. 3.3: Invertible system 
 

That is, if we can get back the input  or  by passing 
the output  or  through another system, then the 
system is invertible, otherwise it is non-invertible. 
 

Example 3.2 
Determine if the following systems are invertible or not 
(a)  
(b)  

(c)  

(d)  
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(a) The system is invertible because we can pass  using 
another system to produce . 
 

(b) The system is not invertible because the sign 
information is lost in the system output. Even employing 
the square root function, there are two possibilities: 

 or . 
 

(c)  

 

If we pass  using another system, 
 can be obtained and hence the 

system is invertible. 
 

(d) Any inputs will give the same output of zero and hence 
the system is not invertible. 
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Linearity 
 

A system is linear if it obeys principle of superposition. 
 
Given two pairs of inputs and outputs, linearity implies: 
 
       (3.2) 
 

and 
 

       (3.3) 
 
where  and . 
 
If the system does not satisfy superposition, it is non-linear. 
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Example 3.3 
Determine whether the following system with input  and 
output , is linear or not: 
 

  

 
A standard approach to determine the linearity of a system 
is given as follows. Let 
 

 
with 

 
 
If , then the system is linear. Otherwise, 
the system is non-linear. This also applies to continuous-
time system. 
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Assigning , we have: 
 

 
 
Note that the outputs for  and  are  
and . 
 
As a result, the system is linear. 
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Example 3.4 
Determine whether the following system with input  and 
output , is linear or not: 
 

 
 

The system outputs for  and  are 
 and . Assigning 

, its system output is then: 
 

 
 

As a result, the system is non-linear. 
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Time-Invariance 
 

A system is time-invariant if a time-shift of input causes a 
corresponding shift in output: 
 

          if    then     (3.4) 
 

and 
 

          if    then     (3.5) 
 
That is, the system response is independent of time. 
 

Example 3.5 
Determine whether the following system with input  and 
output , is time-invariant or not. 
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A standard approach to determine the time-invariance of a 
system is given as follows.  
 

Let  where . If , 
then the system is time-invariant. Otherwise, the system is 
time-variant. This also applies to continuous-time system. 
 

From the given input-output relationship,  is: 
 

 
 

Let , its system output is: 
 

 
As a result, the system is time-invariant. 
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Example 3.6 
Determine whether the following system with input  and 
output , is time-invariant or not: 
 

 
 
From the given input-output relationship,  is of the 
form: 

 
 
Let , its system output is: 
 

 
 
As a result, the system is time-variant. 
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Causality 
 

A system is causal if the output  (or ) at time  (or ) 
depends on input  (or ) up to time  (or ). 
 
In casual system, output does not depend on future input. 
 
On the other hand, in a non-causal system, the output 
depends on future input. 
 
Example 3.7 
Determine if the following systems are causal or not 
(a)  
(b)  

(c)  
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(a) The system is causal because it does not depend on 
future input. 
 

(b) The system is not causal because it depends on future 
input, namely, . 

 

(c)  

 

We see that the output  at time  depends on input 
 up to time . Hence the system is causal. 

 
Stablity 
 
A system is stable if every bounded input  or 
produces a bounded output  or  for all time  or . 
That is: 
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                   (3.6) 
 

and 
 

                   (3.7) 
 
If a bounded input produces an unbounded output, then the 
system is unstable. 
 
Example 3.8 
Determine if the following systems are stable or not 
(a)  
 

(b)  
 

(c)  
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(a) If  is bounded, say,  for all , we easily get  
 

 
 
Hence the system is stable. 
 

(b) The system is stable because: 
 

 
 
 for a bounded input with  for all . 
 

(c) The system is not stable. It is because for a bounded 
input, namely, , the output is unbounded. 
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Linear Time-Invariant System Characterization 
 

In this course, we will mainly study systems which are both 
linear and time-invariant. 
 

Apart from being fundamental, many practical applications 
correspond to linear time-invariant (LTI) system. 
 
Impulse Response 
 

The impulse response (  or ) is the output of a LTI 
system when the input is the unit impulse (  or ): 
 

continuous-time 
LTI system

discrete-time 
LTI system

 
 

Fig. 3.4: Impulse response 
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For a continuous-time system, the impulse response is also 
continuous-time signal. 
 
For a discrete-time system, the impulse response is also 
discrete-time signal. 
 
A LTI system can be characterized by its impulse response, 
which indicates the system functionality. 
 
Convolution 
 

Convolution is used to describe the relationship between 
input, output and impulse response of a LTI in time domain. 
 
We start with considering the discrete-time impulse 
response  of a LTI system. 
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Recall (2.35) that a discrete-time signal is a linear 
combination of impulses with different time-shifts: 
 

                               (3.8) 

 
Consider  as the system input with  being the output: 
 

                     (3.9) 

 

due to the linearity property of (3.3). 
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Furthermore, using time-invariance property yields: 
 
                               (3.10) 
 
Substituting (3.10) into (3.9), we obtain: 
 
                      (3.11) 

 

which is called the convolution of  and , and  
denotes the convolution operator. 

 
According to (3.11),  completely characterizes the LTI 
system because for any input , the output  can be 
computed with the use of  via convolution where only 
multiplication and addition are involved. 
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There are three properties in convolution: 
 

 Commutative 
 

           (3.12) 
 

 Associative 
 

                   (3.13) 
 
Combining (3.12) and (3.13) yields: 

 

                              (3.14) 
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Fig.3.5: Cascade interconnection and convolution 
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 Distributive 
                                               

   (3.15) 
 

 
 

Fig.3.6: Parallel interconnection and convolution 
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Example 3.9 
Determine the function of a LTI discrete-time system if its 
impulse response is . 
 
Using (3.11) and (3.8), we have: 
 

 
 

The system computes the mean value of two input samples, 
current value and past value. 



H. C. So                                                                        Page 27                                         Semester B 2016-2017 

Similarly, for the continuous-time case, we start with 
considering  of a LTI system. 
 

Recall (2.21) that a continuous-time signal is considered as 
a linear combination of impulses with different time-shifts: 
 

                          (3.16) 
 

Analogous to the development in (3.9)-(3.11), we get: 
 

                     (3.17) 
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Equation (3.17) is the convolution for the continuous-time 
case. However, the computation is more complicated than 
the discrete-time convolution because integration is needed. 
 
Again, we see that  characterizes the input-output 
relationship of LTI system.  
 
Same as the discrete-time case,  specifies the system 
functionality and satisfies the commutative, associative as 
well as distributive properties. 
 
Example 3.10 
Determine the function of a LTI continuous-time system if 
its impulse response is . 
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Using (3.17) and (2.19)-(2.20), we obtain: 
 

 
 
The system computes sum of inputs at two time instants, 
one at current time and the other at current time minus 1 
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Example 3.11 
Determine the function of a LTI continuous-time system if 
its impulse response is . 
 
Using (3.17) and the commutative property, we get: 
 

 
 

Note that  is a rectangular pulse for . 
 
The system computes average input value from the current 
time minus 10 to current time. 
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For LTI systems, we can also use the impulse response to 
check the system causality and stability. 
 
A LTI system is causal if its impulse response satisfies: 
 
                                   (3.18) 
 
                                   (3.19) 
 
A LTI system is stable if its impulse response satisfies: 
 
                                   (3.20) 

 
                                   (3.21) 
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Example 3.12 
Show that for a LTI discrete-time system, the causality 
definition in (3.19) is identical to the universal definition, 
i.e.,  at time  depends on  up to time . 
 
Expanding the convolution formula in (3.12): 
 

 
 
If  does not depend on future inputs  , 
we must have   or   for  . 
 
Hence the two definitions regarding causality are identical. 
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Example 3.13 
Compute the output   if the input is   and the 
LTI system impulse response is  . 
Discuss the stability and causality of system. 
 
Using (3.11), we have: 
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Alternatively, we can first establish the general relationship 
between  and  with the specific  as in Example 3.9: 
 

 
 

Substituting  yields the same . 
 
Since   and  for  
the system is stable and causal. 
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Example 3.14 
Compute the output  if the input is   and the 
LTI system impulse response is  . Discuss 
the stability and causality of system. 
 

Using (3.11), we have: 
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Let   and   
such that . By employing a change of 
variable,   is expressed as   

 

 



H. C. So                                                                        Page 37                                         Semester B 2016-2017 

Since  for ,    for . For  ,  is: 
 

 

 
where the geometric sum formula is applied: 
 

 

 
That is, 
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Similarly,  is: 
 

  

 
Since  for ,    for . For  ,  is: 

 

 

    
That is, 
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Combining the results, we have: 
 

 

 
or 
 

 

 
Since  , the system is stable. 
Moreover, the system is causal because  for . 
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Example 3.15 
Determine  where  and  are 
 

 

and 
 

 
Here, the lengths of both  and  are finite. More 
precisely, , , , ,  , , 

 and  while all other  and  have zero 
values. 
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We still use (3.11) but now it reduces to a finite summation: 

 

By considering the non-zero values of , we obtain: 
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Alternatively, for finite-length discrete-time signals, we can 
use the MATLAB command conv to compute the convolution 
of finite-length sequences: 
 
n=0:3; 
x=n.^2+1; 
h=n+1; 
y=conv(x,h) 
 
The results are 
 
y = 1    4    12    30    43    50    40 
 
As the default starting time indices in both h and x are 1, 
we need to determine the appropriate time index for y 
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The correct index can be obtained by computing one value 
of  using (3.11). For simplicity, we may compute : 
 

 
 
In general, if the lengths of  and  are  and , 
respectively, the length of  is . 
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Example 3.16 
Compute the output  if the input is  with  
and the LTI system impulse response is  . Discuss 
the stability and causality of system. 
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Using (3.17), we have: 
 

 
 

Similar to Example 3.14, when , the integral will only 
involve the zero part of  because  for . Hence 
 

 
 

When , the integral will involve the non-zero part of  
because  for . The output is then: 
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We can combine the results for  and  to yield: 
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Linear Constant Coefficient Difference Equation 
 

For a LTI discrete-time system, its input  and output  
are related via a th-order linear constant coefficient 
difference equation:  
 

                              (3.22) 

 

which is useful to check whether a system is both linear and 
time-invariant or not. 
 

Example 3.17 
Determine if the following input-output relationships 
correspond to LTI systems. 
(a)  
(b)  
(c)   
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(a)It corresponds to a LTI system with , , 
 and  

 
(b)We reorganize the equation as: 
 

 
 

which agrees with (3.22) when ,  and 
. Hence it also corresponds to a LTI system. 

 
(c) It does not correspond to a LTI system because  and 

 are not linear in the equation. 
 
Note that if a system cannot be fitted into (3.22), there are 
three possibilities: linear and time-variant; non-linear and 
time-invariant; or non-linear and time-variant. 
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Example 3.18 
Compute the impulse response  for a LTI system which is 
characterized by the following difference equation: 
 

 
 
Using (3.12), we have: 
 

 
 
we can easily deduce that only  and  are nonzero. That 
is, the impulse response is: 
 

 



H. C. So                                                                        Page 50                                         Semester B 2016-2017 

The difference equation can be used to generate the system 
output and even the system input. 
 
Assuming that ,  is computed as: 
 
 

               (3.23) 

 

 
Assuming that ,  can be obtained from: 
 
 

               (3.24) 
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Example 3.19 
Given a LTI system described by difference equation of 

, compute the system output 
 for  with an input of . It is assumed 

that . 
 
The MATLAB code is: 
 
N=50;     %data length is N+1 
y(1)=1;     %compute y[0], only x[n] is nonzero 
for n=2:N+1 
y(n)=0.5*y(n-1)+2; %compute y[1],y[2],…,y[50]  

         %x[n]=x[n-1]=1 for n>=1 
end 
n=[0:N];       %set time axis 
stem(n,y); 
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Alternatively, we can use the MATLAB command filter by 
rewriting the equation as: 
 

 
 

The corresponding MATLAB code is: 
 

x=ones(1,51);      %define input 
a=[1,-0.5];       %define vector of a_k 
b=[1,1];         %define vector of b_k 
y=filter(b,a,x);     %produce output 
stem(0:length(y)-1,y) 
 

The x is the input which has a value of 1 for , while 
a and b are vectors which contain  and , respectively. 
 

The MATLAB programs for this example are provided as 
ex3_19.m and ex3_19_2.m. 
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Linear Constant Coefficient Differential Equation 
 

For a LTI continuous-time system, its input  and output 
 are related via a th-order linear constant coefficient 

differential equation:  
 
 

                              (3.25) 

 

which is useful to check whether a system is both linear and 
time-invariant or not. 
 
Analogous to the discrete-time case, we can use (3.25) to 
compute system input, output and impulse response. 
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Fourier Series 
 

Chapter Intended Learning Outcomes: 
 
(i) Represent continuous-time periodic signals using 

Fourier series  
 
(ii) Understand the properties of Fourier series 
 
(iii) Understand the relationship between Fourier series 

and linear time-invariant system 
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Periodic Signal Representation in Frequency Domain 
 

Fourier series can be considered as the frequency domain 
representation of a continuous-time periodic signal. 
 
Recall (2.6) that  is said to be periodic if there exists 

 such that 
 

                        (4.1) 
 
The smallest  for which (4.1) holds is called the 
fundamental period. 
 
Using (2.26), the fundamental frequency is related to  as: 
 
                        (4.2) 
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According to Fourier series,  is represented as: 
 

                       (4.3) 
 

where 
 

                 (4.4) 

 

are called Fourier series coefficients. Note that the 
integration can be done for any period, e.g., , . 
 
That is, every periodic signal can be expressed as a sum of 
harmonically related complex sinusoids with frequencies 

, where  is called the first 
harmonic,  is called the second harmonic, and so on. 
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This means that  only contains frequencies 
 with 0 being the DC component. 

 
Note that the sinusoids are complex-valued with both 
positive and negative frequencies. 
 
Note also that  is generally complex and we can also use 
magnitude and phase for its representation: 
 
                          (4.5) 
 

and 
 

                         (4.6) 

 
From (4.3),  can be used to represent . 
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Example 4.1 
Find the Fourier series coefficients for 

. 
 

It is clear that the fundamental frequency of  is . 
According to (4.2), the fundamental period is thus equal to 

, which is validated as follows: 
 

 
 
With the use of Euler formula in (2.29): 
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We can express  as: 
 

  
 
 

which only contains four frequencies. Comparing with (4.3): 
 

 

 

Can we use (4.4)? Why? 
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Example 4.2 
Find the Fourier series coefficients for 

. 
 
With the use of Euler formulas in (2.29)-(2.30),  can be 
written as: 
 

 

 
Again, comparing with (4.3) yields: 
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To plot , we may compute   and  for all , e.g., 

 

and 
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We can also use MATLAB commands abs and angle to 
compute the magnitude and phase, respectively. After 
constructing a vector x containing , we can plot  and 

 using: 
 
subplot(2,1,1) 
stem(n,abs(x)) 
xlabel('k') 
ylabel('|a_k|') 
subplot(2,1,2) 
stem(n,angle(x)) 
xlabel('k') 
ylabel('\angle{a_k}') 
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Example 4.3 
Find the Fourier series coefficients for , which is a 
periodic continuous-time signal of fundamental period  and 
is a pulse with a width of  in each period. Over the 
specific period from  to ,  is: 
 

 

with .  

... ...
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Noting that the fundamental frequency is  and 
using (4.4), we get: 
 

 

For : 

 

For : 
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The reason of separating the cases of  and  is to 
facilitate the computation of , whose value is not 
straightforwardly obtained from the general expression 
which involves “0/0”.  
 
Nevertheless, using ’s rule: 
 

 

 
An investigation on the values of  with respect to 
relative pulse width  is performed as follows.  
 
We see that when  decreases,  seem to be stretched. 
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Example 4.4 
Find the Fourier series coefficients for the following 
continuous-time periodic signal : 
 

 

 

where the fundamental period is  and fundamental 
frequency is . 
 
Using (4.4) with the period from   to : 
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For : 
 

 

 
For : 
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MATLAB can be used to validate the answer. First we have: 
 

 

 

for sufficiently large  because  is decreasing with  
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Setting , we may use the following code: 
 
K=10; 
a_p = 3./(j.*2.*[1:K].*pi).*(1-cos([1:K].*pi)); % +ve a_k 
a_n = 3./(j.*2.*[-K:-1].*pi).*(1-cos([-K:-1].*pi)); %-ve a_k 
a = [a_n 0 a_p]; %construct vector of a_k 
for n=1:2000 
 t=(n-1000)/500; %time interval of (-2,2);  

%small sampling interval of 1/500 to approximate x(t); 
 e = (exp(j.*[-K:K].*pi.*t)).'; %construct exponential vector 
 x(n) = a*e; 
end 
x=real(x); %remove imaginary parts due to precision error 
n=1:2000; 
t=(n-1000)./500; 
plot(t,x) 
xlabel('t') 
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For : 
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In summary, if  is periodic, it can be represented as a 
linear combination of complex harmonics with amplitudes 

. 
 
That is,  correspond to the frequency domain 
representation of  and we may write: 
 
                         (4.7) 
 
where , a function of frequency , is characterized by 

. 
 
Both  and  represent the same signal: we observe 
the former in time domain while the latter in frequency 
domain. 
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continuous and periodic discrete and aperiodic

time domain

... ... ... ...

frequency domain

 
Fig.4.1: Illustration of Fourier series 
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Properties of Fourier Series 
 

Linearity 
 

Let  and  be two Fourier series pairs with the 
same period of . We have: 
 

                         (4.8) 
 
This can be proved as follows. As  and  have the same 
fundamental period of  or fundamental frequency , we 
can write: 
 

 

 
Multiplying  and  by  and , respectively, yields: 
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Summing  and , we get: 
 

 

 
Time Shifting 
 

A shift of  in  causes a multiplication of  in : 
 

                 (4.9) 
 
Time Reversal 
 

                           (4.10) 
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(4.9) and (4.10) are proved as follows. 
 
Recall (4.3): 
 

 
 

 
Substituting  by , we obtain: 
 

 

 
Substituting  by  yields: 
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Time Scaling 
 

For a time-scaled version of ,  where  is a real 
number, we have: 
 

                  (4.11) 

 
Multiplication 
 

Let  and  be two Fourier series pairs with the 
same period of . We have: 
 

                         (4.12) 
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(4.12) is proved as follows. 
 
Applying (4.3) again, the product of  and  is: 
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Conjugation 
                       

                         (4.13) 
 
Parseval’s Relation 
 
The Parseval’s relation addresses the power of : 
                       

                         (4.14) 

 
That is, we can compute the power in either the time 
domain or frequency domain. 
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Example 4.5 
Prove the Parseval’s relation. 
 
Using (4.3), we have: 
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Linear Time-Invariant System with Periodic Input 
 

Recall in a linear time-invariant (LTI) system, the input-
output relationship is characterized by convolution in (3.17): 
 

               (4.15) 

 
If the input to the system with impulse response  is 

, then the output is: 
 

                             (4.16) 
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Note that  is independent of  but a function 
of  and we may denote it as : 
 

                            (4.17) 
 

If we input a sinusoid through a LTI system, there is no 
change in frequency in the output but amplitude and phase 
are modified. 
 
Generalizing the result to any periodic signal in (4.3) yields: 
 

               (4.18) 

 

where only the Fourier series coefficients are modified. 
 
Note that discrete Fourier series is used to represent 
discrete periodic signal in (2.7) but it will not be discussed. 
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Fourier Transform 
 

Chapter Intended Learning Outcomes: 
 
(i) Represent continuous-time aperiodic signals using 

Fourier transform  
 
(ii) Understand the properties of Fourier transform 
 
(iii) Understand the relationship between Fourier 

transform and linear time-invariant system 
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Aperiodic Signal Representation in Frequency Domain 
 

For a periodic continuous-time signal, it can be represented 
in frequency domain using Fourier series. 
 
But in general, signals are not periodic. To address this, we 
use Fourier transform: 
 
                                (5.1) 

 
where  is a function of frequency , also known as 
spectrum, and we can study the signal frequency 
components from it. 
 
Unlike Fourier series,  is continuous in frequency, i.e., 
defined on a continuous range of . 
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The inverse transform is given by 
 
                               (5.2) 

 
As in (4.7), we may write: 
 
                         (5.3) 
 
That is, both  and  represent the same signal:  is 
the time domain representation while  is the frequency 
domain representation. 
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continuous and aperiodic continuous and aperiodic

time domain frequency domain

 
Fig.5.1: Illustration of Fourier transform 
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Derivation of Fourier Transform  
 

Fourier transform can be derived from Fourier series as 
follows. 
 
We start with an aperiodic  and then construct its 
periodic version  with period . 
 

... ...

 
Fig.5.2: Constructing  from  
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According to (4.4), the Fourier series coefficients of  are: 
 

                                (5.4) 
 

where .  
 
Noting that  for  and  for , 
(5.4) can be expressed as: 
 

                   (5.5) 

 
As  is function of , substituting  in (5.1) gives 
 
                             (5.6) 
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We can express  as: 
 

                                   (5.7) 

 
According to (4.3) and using (5.7), we get the Fourier series 
expansion for : 

                                          
   (5.8) 

 
As  or , . 
 
Considering  as the area of a rectangle whose 
height is  and width corresponds to the interval 
of , we obtain: 
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   (5.9) 

 
Fig. 5.3: Fourier transform from Fourier series 
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Example 5.1 
Find the Fourier transform of  which is a rectangular 
pulse of the form: 
 

 

 
Note that the signal is of finite length and corresponds to 
one period of the periodic function in Example 4.3. Applying 
(5.1) on  yields: 
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Define the sinc function: 
 

 
 

It is seen that  is a scaled sinc function: 
 

 
 

 
We can see that  is continuous in frequency. When the 
pulse width decreases, it covers more frequencies and vice 
versa. 
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Example 5.2 
Find the inverse Fourier transform of  which is a 
rectangular pulse of the form: 
 

 
 

Using (5.2), we get: 
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Example 5.3 
Find the Fourier transform of   with .  
 
Employing the property of  in (2.22) and (5.1), we get: 
 

 

 

Note that when , . 
 

 

and 
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Example 5.4 
Find the Fourier transform of the impulse  .  
 

Using (2.19) and (2.20) with  and , we get: 
 

 

 

Spectrum of  has unit amplitude at all frequencies. This 
aligns with Example 5.1 when . On the other hand, at 

,  will be a DC and only contains frequency 0. 
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Periodic Signal Representation using Fourier Transform 
 
Fourier transform can be used to represent continuous-time 
periodic signals with the use of .  
 
Instead of time domain, we consider an impulse in the 
frequency domain: 
 

                                (5.10) 
 

 
Fig.5.4: Impulse in frequency domain 
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Taking the inverse Fourier transform of  and employing 
the result in Example 5.4,   is computed as: 
 

                     (5.11) 

 
As a result, the Fourier transform pair is: 
 
                                  (5.12) 
 
From (4.3) and (5.12), the Fourier transform pair for a 
continuous-time periodic signal is: 
 
                          (5.13) 
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Example 5.5 
Find the Fourier transform of  which is 
called an impulse train. 
 
Clearly,  is a periodic signal with a period of . Using 
(4.4) and Example 5.4, the Fourier series coefficients are:  
 

 

     
with . According to (5.13), the Fourier transform is: 
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...... ......

 
Properties of Fourier Transform 
 

Linearity 
 

Let  and  be two Fourier transform 
pairs. We have: 
 

                         (5.14) 
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Time Shifting 
 

A shift of  in  causes a multiplication of  in : 
 
                   (5.15) 
 
Time Reversal 
 

                          (5.16) 
 
Time Scaling 
 

For a time-scaled version of ,  where  is a real 
number, we have: 
 

                   (5.17) 
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Multiplication 
 

Let  and  be two Fourier transform 
pairs. We have: 
 

    (5.18) 

 

Conjugation 
                       

                        (5.19) 
 
Parseval’s Relation 
 

The Parseval’s relation addresses the energy of : 
                       

                        (5.20) 
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Convolution 
 

Let  and  be two Fourier transform 
pairs. We have: 
                      

                         (5.21) 
 

which can be derived as: 
                                              

  (5.22) 
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Differentation 
 

Differentiating  with respect to  corresponds to 
multiplying  by  in the frequency domain: 
                     
 

                    (5.23) 

 
Integration 
 

On the other hand, if we perform integration on , then 
the frequency domain representation becomes: 
                  

                        (5.24) 
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Fourier Transform and Linear Time-Invariant System 
 

Recall in a linear time-invariant (LTI) system, the input-
output relationship is characterized by convolution in (3.17): 
 

               (5.25) 

 
Using (5.21), we can consider (5.25) in frequency domain: 
  
                

                   (5.26) 
 
 

This suggests apart from computing the output using time-
domain approach via convolution, we can convert the input 
and impulse response to frequency domain, then  is 
computed from inverse Fourier transform of . 
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In fact,  represents the LTI system in the frequency 
domain, is called the system frequency response. 
 
Recall (3.25) that the input and output of a LTI system 
satisfy the differential equation:  
 
 

                              (5.27) 

 

Taking the Fourier transform and using the linearity and 
differentiation properties, we get: 
 
 

                     (5.28) 
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The system frequency response can also be computed as: 
 

                           (5.29) 

 

Example 5.6 
Determine the system frequency response for a LTI system 
described by the following differential equation: 
 

 
 

Applying (5.29), we easily obtain: 
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Discrete-Time Fourier Transform 
 

Chapter Intended Learning Outcomes: 
 
(i) Represent discrete-time signals using discrete-time 

Fourier transform  
 
(ii) Understand the properties of discrete-time Fourier 

transform 
 
(iii) Understand the relationship between discrete-time 

Fourier transform and linear time-invariant system 
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Discrete-Time Signals in Frequency Domain 
 

For continuous-time signals, we can use Fourier series and 
Fourier transform to study them in frequency domain. 
 
With the use of sampled version of a continuous-time signal 

, we can obtain the discrete-time Fourier transform 
(DTFT) or Fourier transform of discrete-time signals as 
follows. 
 
We start with studying the sampled signal  produced by 
multiplying  by the impulse train : 
 
                        (6.1) 
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t

 
Fig. 6.1: Continuous-time signal multiplied by impulse train 

 

Using (2.20) and assigning , (6.1) becomes: 
                              

   (6.2) 

where  is still a continuous-time signal, although  is 
discrete-time. 
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Taking Fourier transform of  with the use of the 
properties of , we obtain: 
 

       (6.3) 

 
Defining  as the discrete-time frequency parameter 
and writing  as , (6.3) becomes 
 

                                (6.4) 

 
which is the DTFT of the discrete-time signal . 
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As in Fourier transform,  is also called spectrum and is 
a continuous function of the frequency parameter . 
 
Nevertheless,  is periodic with period : 

                              

  (6.5) 

 
for any integer . 
 
To convert  to , we use inverse DTFT: 
 

                                (6.6) 
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which is obtained by putting (6.4) into (6.6): 
                    

   (6.7) 
 
Note that  if  while when , 
we have . 
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discrete and aperiodic continuous and periodic

time domain frequency domain

... ...

 
Fig.6.1: Illustration of DTFT 
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As  is generally complex, we can illustrate  using 
the magnitude and phase spectra, i.e.,  and : 
 
                      (6.8) 
  
and 
 

                           (6.9) 

  
where both are continuous in frequency and periodic with 
period . 
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Example 6.1 
Find the DTFT of  which has the form of: 
 

 
 
Using (6.4), the DTFT is: 
 

 

 
As   and applying the geometric 
sum formula, we have 
 

 
 

where we see that  is complex. 
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Example 6.2 
Find the DTFT of . 
 
Using (6.4), we have 
 

 

 
Analogous to Example 5.4 that the spectrum of the 
continuous-time  has unit amplitude at all frequencies, 
the spectrum of  also has unit amplitude at all 
frequencies in . 
 
Example 6.3 
Find the DTFT of . Plot the magnitude and 
phase spectra for  . 
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Using (6.4), we have 
 

 

 

We can also further express  as: 
 

 

In doing so,  and  can be written in closed-
forms as: 

 

and 
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Although  is real, its phase is  if it is 
negative while the phase is 0 if it is positive. 
 

Note that we generally employ (6.8) and (6.9) for 
magnitude and phase computation. 
 

In using MATLAB to plot  and , we utilize the 
command sinc so that there is no need to separately 
handle the “0/0” cases due to the sine functions. Recall: 
 

 
 

As a result, we have: 
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The key MATLAB code for  is  
 
N=10;               %N=10 
w=0:0.01*pi:2*pi;  %successive frequency point  

%separation is 0.01pi 
dtft=N.*sinc(w.*N./2./pi)./(sinc(w./2./pi)).*exp(-
j.*w.*(N-1)./2);    %define DTFT function 
subplot(2,1,1) 
Mag=abs(dtft);      %compute magnitude                      
plot(w./pi,Mag);    %plot magnitude 
subplot(2,1,2) 
Pha=angle(dtft);    %compute phase 
plot(w./pi,Pha);    %plot phase 
 
There are 201 uniformly-spaced points for plotting the 
continuous functions  and .  
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Example 6.4 
Find the inverse DTFT of  which is a rectangular pulse. 
Within the period of ,  has the form of: 
 

 

where . 
 

Using (6.6), we get: 
 

 

 

That is,  is an infinite-duration sequence whose values 
are drawn from a scaled sinc function. 
 

Note also that  corresponds to the discrete-time version 
in Example 5.2. 
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Example 6.5 
Given a discrete-time finite-duration sinusoid: 
 

 
 

Find the tone frequency using DTFT. 
 
Consider the continuous-time case first. According to 
(5.10), the Fourier transform pair for a complex continuous-
time tone of frequency  is: 
 

 
 

That is,  can be found by locating the peak of the Fourier 
transform. Moreover, a real-valued tone  is: 
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This means that  and  can be found from the two 
impulses of the Fourier transform of . 
 

Analogously, we expect that there are two peaks which 
correspond to frequencies  and  in the DTFT for . 
 

The MATLAB code is 
N=21;       %number of samples is 21 
A=2;            %tone amplitude is 2 
w=0.5*pi;    %frequency is 0.5*pi 
p=1;         %phase is 1 
n=0:N-1;     %define a vector of size N 
x=A*cos(w*n+p); %generate tone 
for k=1:2001    %frequency index k 
w=(k-1)*pi/1000; %frequency interval of [0,2pi];  
%compute DTFT at frequency points w only 
e=(exp(j.*w.*n)).'; %construct exponential vector 
X(k) = x*e; 
end 
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X=abs(X); %compute magnitude 
k=1:2001; 
f=(k-1)./1000; 
plot(f,X) 
 
Note that  is continuous in  and we cannot compute 
all points. Instead, here we only compute  at 

 for . That is, k corresponds to 
frequency w=(k-1)*pi/1000. 
 
With the use of max(abs(X)), we find that the peak 
magnitude corresponds to the index k=501, then the signal 
frequency is correctly determined as: 
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Properties of DTFT 
 

Linearity 
 

If  and  are two DTFT pairs, then: 
 

                        (6.10) 
 
Time Shifting 
 

A shift of  in  causes a multiplication of  in : 
 

                     (6.11) 
 
Time Reversal 
 

The DTFT pair for  is given as: 
 

                          (6.12) 



H. C. So                                                                        Page 21                                         Semester B 2016-2017 

Multiplication 
 

Multiplication in the time domain corresponds to convolution 
in the frequency domain: 

                      

   (6.13) 

 

where  denotes convolution within one period. 
 
Conjugation 
 

The DTFT pair for  is given as: 
 

                     (6.14) 
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Multiplication by an Exponential Sequence 
 

Multiplying  by  in time domain corresponds to a shift 
of  in the frequency domain: 
 

                   (6.15) 
 

Differentiation 
 

Differentiating  with respect to  corresponds to 
multiplying  by : 

                      (6.16) 
 

Parseval’s Relation 
 

The Parseval’s relation addresses the energy of : 

                    (6.17) 
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With the use of (6.6), (6.17) is proved as: 
 

  (6.18) 
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Convolution 
 

If   and   are two DTFT pairs, then: 
 

                    (6.19) 
 
which can be derived as: 

                                                

  (6.20) 
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DTFT and Linear Time-Invariant System 
 

Recall in a discrete-time LTI system, the input-output 
relationship is characterized by convolution in (3.11): 
 

               (6.21) 

 
Using (6.19), we can consider (6.21) in frequency domain: 
  
                

                   (6.22) 
 
 

This suggests apart from computing the output using time-
domain approach via convolution, we can convert the input 
and impulse response to frequency domain, then  is 
computed from inverse DTFT of . 
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In fact,  represents the LTI system in the frequency 
domain, is called the system frequency response. 
 
Recall (3.22) that the input and output of a discrete-time 
LTI system satisfy the difference equation:  
 
 

                              (6.23) 

 

Taking the DTFT and using the linearity and time shifting 
properties, we get: 
 
 

                           (6.24) 
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The system frequency response can also be computed as: 
 

                           (6.25) 

 

Example 6.6 
Determine the system frequency response for a causal LTI 
system described by the following difference equation: 
 

 
 

Applying (6.25), we easily obtain: 
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Example 6.7 
The moving average (MA) is in fact a LTI system. Consider 
the close price of Dow Jones Industrial Average (DJIA) 
index as input  and the output  is the 20-day MA. 
Establish the input-output relationship using a difference 
equation. Then compute the system impulse response and 
frequency response. Plot the system magnitude frequency 
response.  
 
In stock market (or other applications), future data are 
unavailable. The best we can do is to use the today value 
and close prices of previous 19 trading days in MA 
calculation, that is: 
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Following Example 3.18, we can easily deduce the impulse 
response as: 
 

 

 

Applying (6.25), the system frequency response is: 
 

 

 

From the magnitude plot, the frequency is concentrated 
around the DC. It is called a lowpass filter (also for Example 
6.3).  
 

From Fig. 1.11, we see that low-frequency components 
(smooth part) are kept while high-frequency components 
(fluctuations) are suppressed in the system output. 
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The MATLAB code for the plot is provided as ex6_7.m. 
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Sampling and Reconstruction 
 

Chapter Intended Learning Outcomes: 
 
(i) Convert a continuous-time signal to a discrete-time 

signal via sampling 
 
(ii) Construct a continuous-time signal from a discrete-

time signal 
 
(iii) Understand the conditions when a sampled signal can 

uniquely represent its continuous-time counterpart 
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Sampling 
 

Process of converting a continuous-time signal  into a 
discrete-time signal . 

 

 is obtained by extracting  every  s where  is known 
as the sampling period or interval. 

 

sample at

analog
signal 

discrete-time
signal  

Fig.7.1: Conversion of analog signal to discrete-time signal 
 

Relationship between  and  is: 
 

        (7.1) 
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Conceptually, conversion of  to  is achieved by a 
continuous-time to discrete-time (CD) converter: 

t n

impulse train 
to sequence 
conversion

CD converter

 
Fig.7.2: Block diagram of CD converter 
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A fundamental question is whether  can uniquely 
represent  or if we can use  to reconstruct . 

t

 
Fig.7.3: Different analog signals map to same sequence 
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But, the answer is yes when: 
 

(1)  is bandlimited such that its Fourier transform 
 for  where  is called the bandwidth. 

 

(2) Sampling period  is sufficiently small. 
 
Example 7.1 
The continuous-time signal   is used as the 
input for a CD converter with the sampling period  s. 
Determine the resultant discrete-time signal  . 
 
According to (7.1),  is 
 

 
 

The frequency in  is   while that of  is . 



H. C. So                                                                        Page 6                                         Semester B 2016-2017 

Frequency Domain Representation of Sampled Signal 
 

In the time domain,  is obtained by multiplying  by 
the impulse train . From (6.2), we have: 
 

          (7.2) 

 
Let the sampling frequency in radian be  (or 

 in Hz). From Example 5.5, we have: 
 

                            (7.3) 
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Using multiplication property of Fourier transform in (5.18): 
       

(7.4) 

 
where the convolution operation corresponds to continuous-
time signals. 
 
Using (7.2)-(7.4) and the properties of ,  is 
determined as follows: 
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   (7.5) 
 

which  is the sum of infinite copies of  scaled by . 
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When  is chosen sufficiently large such that all copies of 
 do not overlap, that is,  or , we 

can get  from . 
 

......

......

 
Fig.7.4:  for sufficiently large  
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When  is not chosen sufficiently large such that , 
copies of  overlap, we cannot get  from , 
which is referred to aliasing. 
 

......

......

 
Fig.7.5:  when  is not large enough 
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These findings can be summarized as sampling theorem: 
 
Let  be a bandlimited continuous-time signal with  
 

                          (7.6) 
 
Then  is uniquely determined by its samples , 

, if 
 

                                  (7.7) 

 
In order to avoid aliasing, the sampling frequency must 
exceed . 
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Application    
Biomedical  Hz 1 kHz 
Telephone speech  kHz 8 kHz 
Music  kHz 44.1 kHz 
Ultrasonic  kHz 250 kHz 
Radar  MHz 200 MHz 

Table 7.1: Typical bandwidths and sampling frequencies in 
signal processing applications 
 
Example 7.2 
Consider the continuous-time signal : 
 

 
 

Determine minimum sampling frequency to avoid aliasing. 
 

The frequencies are 0,  and . The minimum 
sampling frequency must exceed  . 
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......

Fig.7.6: Multiplying  by  to recover  
 
In frequency domain, we multiply  by  with 
amplitude  and bandwidth  with , to 
obtain , and it corresponds to , 
according to (5.26). 
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Reconstruction 
 

Process of transforming  back to  via a discrete-time 
to continuous-time (DC) converter. 
 

sequence to
impulse train 
conversion

DC converter

 
Fig.7.7: Block diagram of DC converter 

 

From Fig.7.6, the requirements of  are: 
 

                        (7.8) 
 

 where , which is a lowpass filter. 
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For simplicity, we set  as the average of  and : 
 

                                   (7.9) 

 
To get the impulse response , we take inverse Fourier 
transform of  or use Example 5.2: 
 

    (7.10) 

 
where . 
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Using (7.2) and the properties of ,  is: 
 

               (7.11) 

 
which holds for all real values of . 
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The interpolation formula can be verified at : 
 

                       (7.12) 

It is easy to see that  
                (7.13) 

 

For , we use ’s rule to obtain: 
 

      (7.14) 

 

Substituting (7.13)-(7.14) into (7.12) yields: 
 

                       (7.15) 
 

which aligns with . 
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Example 7.3 
Suppose a continuous-time signal  is sampled at 
a sampling frequency of 1000Hz to produce : 
  

 
 

Determine 2 possible positive values of , say,  and . 
Discuss if  or  will be obtained when passing 

 through the DC converter. 
 

According to (7.1) with  s: 
 

 
 

 is easily computed as: 
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 can be obtained by noting the periodicity of a sinusoid: 
 

 
 

As a result, we have: 
 

 
 

This is illustrated using the MATLAB code: 
 

O1=250*pi;       %first frequency  
O2=2250*pi;       %second frequency 
Ts=1/100000;%successive sample separation is 0.01T 
t=0:Ts:0.02;%observation interval 
x1=cos(O1.*t);       %tone from first frequency 
x2=cos(O2.*t);        %tone from second frequency 
 

There are 2001 samples in 0.02s and interpolating the 
successive points based on plot yields good approximation.  
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Fig.7.8: Discrete-time sinusoid 
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Fig.7.9: Continuous-time sinusoids 
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Passing  through the DC converter only produces  
but not . 
 

The signal frequency of  is   and hence the 
sampling frequency without aliasing is . 
 

Given  Hz or  ,  does not 
correspond to . 
 

We can recover  because the signal frequency 
of  is  , and . 
 

Based on (7.11),  is:  
 

 

 

with  s. 
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The MATLAB code for reconstructing  is: 
 

n=-10:30;          %add 20 past and future samples 
x=cos(pi.*n./4); 
T=1/1000;          %sampling interval is 1/1000 
for l=1:2000       %observed interval is [0,0.02] 
t=(l-1)*T/100;%successive sample separation is 0.01T 
h=sinc((t-n.*T)./T); 
xr(l)=x*h.'; %approximate interpolation of (7.11) 
end 
 

We compute 2000 samples of  in s. 
 

The value of each  at time t is approximated as x*h.' 
where the sinc vector is updated for each computation. 
 

The MATLAB program is provided as ex7_3.m. 
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Fig.7.10: Reconstructed continuous-time sinusoid 
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z Transform 
 
 

Chapter Intended Learning Outcomes: 
 
(i) Represent discrete-time signals using  transform 
 
(ii) Understand the relationship between  transform and 

discrete-time Fourier transform 
 
(iii) Understand the properties of  transform 
 
(iv) Perform operations on  transform and inverse  

transform 
 
(v) Apply  transform for analyzing linear time-invariant 

systems 
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Discrete-Time Signal Representation with z Transform 
 

Apart from discrete-time Fourier transform (DTFT), we can 
also use  transform to represent discrete-time signals. 
  

The  transform of , denoted by , is defined as: 
 
                            (8.1) 

 
where  is a continuous complex variable. 
 
We can also express  as: 
 
                                        (8.2) 
 
where   is magnitude and   is angle of .  
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Employing (8.2), the  transform can be written as: 
 

               (8.3) 

 
Comparing (8.3) and the DTFT formula in (6.4): 
 

                                (8.4) 

 
 

That is,  transform of  is equal to the DTFT of  .  
 
When  or  , (8.3) and (8.4) are identical: 
 

                   (8.5) 
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That is,  transform generalizes the DTFT. 
 

unit circle

-plane

 
Fig.8.1: Relationship between  and  on the -plane 
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Region of Convergence (ROC) 
 

ROC indicates when  transform of a sequence converges. 
 

Generally there exists some  such that 
 

                      (8.6) 

 

where the  transform does not converge. 
 
The set of values of  for which  converges or  
 

            (8.7) 

 

is called the ROC, which must be specified along with  in 
order for the  transform to be complete. 
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Note also that if  
 

                           (8.8) 

 
then the DTFT does not exist. While the DTFT converges if 
                             

 (8.9) 

 
That is, it is possible that the DTFT of  does not exist. 
 
Also, the  transform does not exist if there is no value of  
satisfies (8.7). 
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Assuming that  is of infinite length, we decompose : 
 
                         (8.10) 
where 

                  (8.11) 

and 

                           (8.12) 

 

Let ,  is expanded as: 
 

               (8.13) 
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According to the ratio test, convergence of   requires 
 

                              (8.14) 

 
Let .  converges if 

 

          (8.15) 

 
That is, the ROC for  is . 
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Let .   converges if 
 

          (8.16) 

 
As a result, the ROC for  is . 
 
Combining the results, the ROC for  is : 
 
 ROC is a ring when  
 
 No ROC if  and  does not exist 
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-plane-plane-plane-plane

Fig.8.2: ROCs for ,  and  
 
Poles and Zeros 
 
Values of  for which  are the zeros of . 
 
Values of  for which  are the poles of . 
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Example 8.1 
In many real-world applications,  is represented as a 
rational function in : 
 

 

 
Discuss the poles and zeros of . 
 
Multiplying both  and  by  and then perform 
factorization yields: 
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We see that there are  nonzero zeros, namely, 

, and  nonzero poles, namely, . 
 
If , there are  poles at zero location. 
 
On the other hand, if , there are  zeros at zero 
location. 
 
Note that we use a “ ” to represent a zero and a “ ” to 
represent a pole on the -plane. 
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Example 8.2 
Determine the  transform of  where  is the 
unit step function. Then determine the condition when the 
DTFT of  exists. 
 

Using (8.1) and (2.34), we have 
 

 

  

According to (8.7),  converges if  
  

 

 

Applying the ratio test, the convergence condition is 
 

 
which aligns with the ROC for  in (8.15). 
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Note that we cannot write  because  may be complex.  
 

For ,  is computed as 
 

 

 

Together with the ROC, the  transform of  is: 
  

 
 

It is clear that  has a zero at  and a pole at . 
Using (8.5), we substitute  to obtain 
 

 
 

As a result, the existence condition for DTFT of  is . 
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Otherwise, its DTFT does not exist. In general, the DTFT 
 exists if its ROC includes the unit circle. If  

includes ,  is required.  

-plane -plane-plane-plane-plane-plane

 
Fig.8.3: ROCs for  and  when  
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Example 8.3 
Determine the  transform of . Then 
determine the condition when the DTFT of  exists. 
 

Using (8.1) and (2.34), we have 
 

 

 

Similar to Example 8.2,  converges if  or , 
which aligns with the ROC for  in (8.16). This gives 
  

 

  

Together with ROC, the  transform of  is: 
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Using (8.5), we substitute  to obtain 
 

 
 

As a result, the existence condition for DTFT of  is .  

-plane -plane-plane-plane-plane-plane

 
Fig.8.4: ROCs for  and  when  
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Example 8.4 
Determine the  transform of  where 

. 
 
Employing the results in Examples 8.2 and 8.3, we have 
 

 

  
Note that its ROC agrees with Fig. 8.2.  
 
What are the pole(s) and zero(s) of X(z)? 
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Example 8.5 
Determine the  transform of . 
 

Using (8.1) and (2.33), we have 
 

 

Example 8.6 
Determine the  transform of  which has the form of: 
 

 

Using (8.1), we have 
 

 
 

What are the ROCs in Examples 8.5 and 8.6? 
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Finite-Duration and Infinite-Duration Sequences 
 

Finite-duration sequence: values of  are nonzero only for 
a finite time interval. 
 

Otherwise,  is called an infinite-duration sequence: 
 

 Right-sided: if  for   where  is an 
integer (e.g.,  with ;  with 

;  with ). 
 

 Left-sided: if  for   where  is an 
integer (e.g.,  with ). 

 

 Two-sided: neither right-sided nor left-sided (e.g., 
Example 8.4). 
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n

 
Fig.8.5: Finite-duration sequences 
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n

 
Fig.8.6: Infinite-duration sequences 
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Sequence Transform ROC 
 1 All  

  , ; ,  
 

 
  

 
 

  
 

 
   

 
 

   
 

 
    

 
    

Table 8.1:  transforms for common sequences 
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Summary of ROC Properties 
 

P1. There are four possible shapes for ROC, namely, the 
entire region except possibly  and/or , a ring, or 
inside or outside a circle in the -plane centered at the 
origin (e.g., Figures 8.6 and 8.7). 
 

P2. The DTFT of a sequence  exists if and only if the ROC 
of the  transform of  includes the unit circle (e.g., 
Examples 8.2 and 8.3). 
 

P3: The ROC cannot contain any poles (e.g., Examples 8.2 
to 8.4). 
 

P4: When  is a finite-duration sequence, the ROC is the 
entire -plane except possibly  and/or  (e.g., 
Examples 8.5 and 8.6). 
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P5: When  is a right-sided sequence, the ROC is of the 
form  where  is the pole with the largest 
magnitude in  (e.g., Example 8.2). 
 

P6: When  is a left-sided sequence, the ROC is of the 
form  where  is the pole with the smallest 
magnitude in  (e.g., Example 8.3). 
 

P7: When  is a two-sided sequence, the ROC is of the 
form  where  and  are two poles with the 
successive magnitudes in  such that  (e.g., 
Example 8.4).  
 

P8: The ROC must be a connected region.  
 

Example 8.7 
A  transform  contains three poles, namely, ,  and  
with . Determine all possible ROCs. 
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-plane-plane-plane

-plane-plane-plane -plane-plane-plane

-plane-plane-plane

 
Fig.8.7: ROC possibilities for three poles 

What are other possible ROCs? 
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Properties of z Transform 
 

Linearity 
 

Let  and  be two  transform pairs 
with ROCs  and , respectively, we have 
 

                    (8.17) 
 

Its ROC is denoted by , which includes  where  is 
the intersection operator. That is,  contains at least the 
intersection of  and . 
 

Example 8.8 
Determine the  transform of  which is expressed as: 
 

 
 

where  and .  
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From Table 8.1, the  transforms of  and  are: 
 

 

and 
 

 
According to the linearity property, the  transform of  is 
 

 

 
Why the ROC is |z|>0.3 instead of |z|>0.2? 
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Example 8.9 
Determine the ROC of the  transform of  which is 
expressed as: 
 

 
 

Noting that , we know that the ROC of 
 is the entire -plane. 

 

On the other hand, both ROCs of   and  are 
. We see that the ROC of  contains the 

intersections of  and , which is . 
 

Time Shifting 
 

A time-shift of  in  causes a multiplication of  in  
 

         (8.18) 
 

The ROC for  is basically identical to that of  
except for the possible addition or deletion of  or . 
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Example 8.10 
Find the  transform of  which has the form of: 
 

 
 

Employing the time shifting property with  and: 
 

 

we easily obtain  
 

 
 

Note that using (8.1) with  also produces the same 
result but this approach is less efficient: 
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Multiplication by an Exponential Sequence 
 

If we multiply  by  in the time domain, the variable  
will be changed to  in the  transform domain. That is: 
 

               (8.19) 
 

If the ROC for  is , then the ROC for  is 
. 

 

Example 8.11 
With the use of the following  transform pair: 
 

 
 

Find the  transform of  which has the form of: 
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Noting that ,  can be written as: 
 

 
 

By means of the property of (8.19) with the substitution of 
 and , we obtain: 

 

 

and 
 

 

By means of the linearity property, it follows that 
 

 
  

which agrees with Table 8.1. 
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Differentiation 
 

Differentiating  with respect to  corresponds to 
multiplying  by  in the time domain: 
 

                          (8.20) 
 

The ROC for  is basically identical to that of  except 
for the possible addition or deletion of  or . 
 

Example 8.12 
Determine the  transform of . 
 
We have:  

    

and 
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By means of the differentiation property, we obtain: 
 

 
 

which agrees with Table 8.1. 
 
Conjugation 
 

The  transform pair for  is: 
 

                        (8.21) 
 

The ROC for  is identical to that of . 
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Time Reversal 
 

The  transform pair for  is: 
 

                             (8.22) 
 

If the ROC for  is ,  the ROC for  is 
. 

 

Example 8.13 
Determine the  transform of . 
 

Using Example 8.12:  

 
 

and from the time reversal property: 
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Convolution 
 

Let  and  be two  transform pairs 
with ROCs  and , respectively. Then we have: 
 

                       (8.23) 
 

and its ROC includes .  
 

The proof is given as follows.  
 

Let 
 

                      (8.24) 
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With the use of the time shifting property,  is: 
 

   (8.25)  
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Causality and Stability Investigation with ROC  
 
Suppose  is the impulse response of a discrete-time 
linear time-invariant (LTI) system. Recall (3.19), which is 
the causality condition: 
 
                                    (8.26) 
 
If the system is causal and  is of finite duration, the ROC 
should include  (See Example 8.5 and Figure 8.5). 
 
If the system is causal and  is of infinite duration, the 
ROC is of the form  and should include  (See 
Example 8.2 and Figure 8.6). According to P5,  must be 
a right-sided sequence. 
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Example 8.14 
Consider a LTI system with impulse response : 
 

 
 
Discuss the causality of the system. 
 
According to (8.26), the system is not causal. Although it is 
a right-sided sequence, the ROC of  does not include : 
 

 

 
where  cannot be equal to  for convergence. 
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Applying the time shifting property, we get: 
 

 
 
The numerator has degree 11 while the denominator has 
degree 1, making the ROC cannot include . 
 
Generalizing the results, for a rational , it will be a 
causal system if its ROC has the form of  and the 
order of the numerator is not greater than that of the 
denominator. 
 
Recall the stability condition in (3.21): 
 

                                   (8.27) 



H. C. So                                                                        Page 41                                         Semester B 2016-2017 

Based on (8.9), this also means that the DTFT of  exists.  
 

According to P2, (8.27) indicates that the ROC of  
should include the unit circle. 
 
Example 8.15 
Consider a LTI system with impulse response : 
 

 
 

Discuss the stability of the system. 
 
Using the result in Example 8.14, we have: 
 

 

That is, if , then the system is stable. Otherwise, the 
system is not stable. 
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Inverse z Transform 
 

Inverse  transform corresponds to finding  given  
and its ROC. 
 

The  transform and inverse  transform are one-to-one 
mapping provided that the ROC is given: 
 

                                     (8.28) 
 

There are 4 commonly used techniques to evaluate the 
inverse  transform. They are 
 

1. Inspection 
 

2. Partial Fraction Expansion 
 

3. Power Series Expansion 
 

4. Cauchy Integral Theorem 
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Inspection 
 
When we are familiar with certain transform pairs, we can 
do the inverse  transform by inspection. 
 
Example 8.16 
Determine the inverse  transform of  which is 
expressed as: 
 

 

 
We first rewrite  as: 
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Making use of the following transform pair in Table 8.1: 
 

 
 

and putting , we have: 
 

 
 

By inspection, the inverse  transform is: 
 

 
 

Partial Fraction Expansion 
 

We consider that  is a rational function in : 

                                     (8.29) 
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To obtain the partial fraction expansion from (8.29), the 
first step is to determine the  nonzero poles, . 
 

There are 4 cases to be considered: 
 

Case 1:   and all poles are of first order 
 

For first-order poles, all  are distinct.  is: 
 

                            (8.30) 

 

For each first-order term of , its inverse  
transform can be easily obtained by inspection. 
 
Multiplying both sides by   and evaluating for   
 

                                 (8.31) 
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An illustration for computing  with  is: 
  

                (8.32) 

 
Substituting , we get . 
 
In summary, three steps are: 
 

 Find poles. 
 

 Find . 
 

 Perform inverse  transform for the fractions by inspection. 
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Example 8.17 
Find the pole and zero locations of : 
 

 
 

Then determine the inverse  transform of . 
 

We first multiply  to both numerator and denominator 
polynomials to obtain: 
 

 

 
Apparently, there are two zeros at  and . On the 
other hand, by solving the quadratic equation at the 
denominator polynomial, the poles are determined as  
and .  
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According to (8.30), we have: 
 

 
 

Employing (8.31),  is calculated as: 
 

 
 

Similarly,  is found to be . As a result, the partial 
fraction expansion for  is 
 

 
 

As the ROC is not specified, we investigate all possible 
scenarios, namely, , , and . 
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For , we notice that  
 

 

 and 
 

 

where both ROCs agree with . Combining the 
results, the inverse  transform  is: 
 

 
  
which is a right-sided sequence and aligns with P5. 
 

For , we make use of 
 

 

and 
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where both ROCs agree with . This implies: 
 

 
 

which is a two-sided sequence and aligns with P7. 
 

Finally, for : 
 

and 
 

 

where both ROCs agree with . As a result, we have: 
 

 
 

which is a left-sided sequence and aligns with P6. 
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Suppose  is the impulse response of a discrete-time LTI 
system.  
 
In terms of causality and stability, there are three possible 
cases: 
 

  is the impulse response of a 
causal but unstable system (ROC: ). 
 

  corresponds to a non-
causal but stable system (ROC: ). 

 
  is non-causal and unstable 

(ROC: ). 
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Case 2:   and all poles are of first order 
 

In this case,  can be expressed as: 
 

                  (8.33) 

 

   are obtained by long division of the numerator by the 
denominator, with the division process terminating when 
the remainder is of lower degree than the denominator. 
 

  can be obtained using (8.31). 
 

Example 8.18 
Determine  which has  transform of the form: 
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The poles are easily determined as  and  
 

According to (8.33) with : 
 

 
 

The value of  is found by dividing the numerator 
polynomial by the denominator polynomial as follows: 
 

           

 
 

That is, . Thus  is expressed as 
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According to (8.31),  and  are calculated as 
 

 

and 

 

With : 
 

 

 

and 
 

 

the inverse  transform  is: 
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Case 3:   with multiple-order pole(s) 
   

If  has a -order pole at  with , this means that 
there are  repeated poles with the same value of .  is: 
 

            (8.34) 

 

 When there are two or more multiple-order poles, we 
include a component like the second term for each 
corresponding pole 
 

  can be computed according to (8.31) 
 

  can be calculated from: 
 

         (8.35) 
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Example 8.19 
Determine the partial fraction expansion for : 
 

 

 
It is clear that  corresponds to Case 3 with  
and one second-order pole at . Hence  is: 
 

 

 

 Employing (8.31),  is: 
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Applying (8.35),  is: 
 

  
and 
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Therefore, the partial fraction expansion for  is 
 

 

 

Case 4:   with multiple-order pole(s) 
 

This is the most general case and the partial fraction 
expansion of  is 
 

      (8.36) 

 

assuming that there is only one multiple-order pole of order 
 at . It is easily extended to the scenarios when 

there are two or more multiple-order poles as in Case 3. 
The  ,  and  can be calculated as in Cases 1, 2 and 3.  
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Power Series Expansion 
 

When  is expanded as power series according to (5.1): 
 

 (8.37) 
 

any particular value of  can be determined by finding the 
coefficient of the appropriate power of  
 

Example 8.20 
Determine  which has  transform of the form: 
 

 
  

Expanding  yields 
 

 
 

From (8.37),  is deduced as: 
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Example 8.21 
Determine  whose  transform has the form of: 
 

 
 

With the use of 
 

 
 

Carrying out long division in  with : 
 

 
 

From (8.37),  is deduced as: 
 

 
 

which agrees with Example 8.2 and Table 8.1. 
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Example 8.22 
Determine  whose  transform has the form of: 
 

 
 

We first express  as: 
 

 
 

Carrying out long division in  with : 
 

 
 

From (8.37),  is deduced as: 
 

 
 

which agrees with Example 8.3 and Table 8.1. 
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Transfer Function of Linear Time-Invariant System 
 
A LTI system can be characterized by the transfer function, 
which is a  transform expression 
 
Starting with: 

                  (8.38) 

 

Applying  transform on (8.38) with the use of the linearity 
and time shifting properties, we have:  
         

                   (8.39) 

 

The transfer function, denoted by , is defined as: 
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                          (8.40) 

 
The system impulse response  is given by the inverse  
transform of  with an appropriate ROC, that is, 

, such that . This suggests that we 
can first take the  transforms for  and , then multiply 

 by , and finally perform the inverse  transform of 
. 

 

Comparing with (6.25), we see that the system frequency 
response can be obtained as  if it exists. 
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Example 8.23 
Determine the transfer function for a LTI system whose 
input  and output  are related by: 
 

 
 
Applying  transform on the difference equation with the use 
of the linearity and time shifting properties,  is: 
 

 

 
Note that there are two ROC possibilities, namely,  
and , and we cannot uniquely determine . 
However, if it is known that the system is causal,  can be 
uniquely found because the ROC should be . 
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Example 8.24 
Find the difference equation of a LTI system whose transfer 
function is given by 
 

 

 
Let . Performing cross-multiplication and 
inverse  transform, we obtain: 
 

 
 
Examples 8.23 and 8.24 imply the equivalence between the 
difference equation and transfer function. 
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Example 8.25 
Compute the impulse response  for a LTI system which is 
characterized by the following difference equation: 
 

 
 

Applying  transform on the difference equation with the use 
of the linearity and time shifting properties,  is: 
 

 
 

There is only one ROC possibility, namely, . Taking the 
inverse  transform on , we get: 
 

 
 
which agrees with Example 3.18. 
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Example 8.26 
Determine the output   if the input is   and the 
LTI system impulse response is  
 

The  transforms for  and  are 
 

 

and    
 

 

As a result, we have: 
 

 
 

Taking the inverse  transform of  with the use of the 
time shifting property yields: 
 

 
 

which agrees with Example 3.13. 
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Laplace Transform 
 

Chapter Intended Learning Outcomes: 
 
(i) Represent continuous-time signals using Laplace 

transform 
 
(ii) Understand the relationship between Laplace 

transform and Fourier transform 
 
(iii) Understand the properties of Laplace transform 
 
(iv) Perform operations on Laplace transform and inverse 

Laplace transform 
 
(v) Apply Laplace transform for analyzing linear time-

invariant systems 
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Analog Signal Representation with Laplace Transform 
 

Apart from Fourier transform, we can also use Laplace 
transform to represent continuous-time signals. 
  

The Laplace transform of , denoted by , is defined 
as: 
 
                            (9.1) 
 

where  is a continuous complex variable. 
 
We can also express  as: 
 

                                        (9.2) 
 

where  and  are the real and imaginary parts of , 
respectively. 
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Employing (9.2), the Laplace transform can be written as: 
 

      (9.3) 

 
Comparing (9.3) and the Fourier transform formula in (5.1): 
 

                                (9.4) 

 
 

Laplace transform of  is equal to the Fourier transform of 
.  

 
When  or  , (9.3) and (9.4) are identical: 
 

                   (9.5) 
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That is, Laplace transform generalizes Fourier transform, as 
 transform generalizes the discrete-time Fourier transform. 

 
 

-plane

 
Fig.9.1: Relationship between  and  on the -plane 
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Region of Convergence (ROC) 
 

As in  transform of discrete-time signals, ROC indicates 
when Laplace transform of  converges. 
 

That is, if 

                      (9.6) 
 

then the Laplace transform does not converge at point . 
 

Employing  and , Laplace transform exists if 
 

       (9.7) 
 

The set of values of  which satisfies (9.7) is called the 
ROC, which must be specified along with  in order for 
the Laplace transform to be complete. 
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Note also that if  
 

                           (9.8) 

 
then the Fourier transform does not exist. While it exists if 
 
                  (9.9) 

 
Hence it is possible that the Fourier transform of  does 
not exist. 
 
Also, the Laplace transform does not exist if there is no 
value of  satisfies (9.7). 
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Poles and Zeros 
 
Values of  for which  are the zeros of . 
 
Values of  for which  are the poles of . 
 

Example 9.1 
In many real-world applications,  is represented as a 
rational function in : 
 

 

 
Discuss the poles and zeros of . 
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Performing factorization on   yields: 
 

 

 
We see that there are  nonzero zeros, namely, 

, and  nonzero poles, namely, . 
 
As in  transform, we use a “ ” to represent a zero and a “ ” 
to represent a pole on the -plane. 
 
 
 



H. C. So                                                                        Page 9                                         Semester B 2016-2017 

Example 9.2 
Determine the Laplace transform of  where  
is the unit step function and  is a real number. Determine 
the condition when the Fourier transform of  exists. 
 

Using (9.1) and (2.22), we have 
 

 
  

Employing  yields  
  

 
 

It converges if  is bounded at , indicating that 
the ROC is 
 

 or  
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 For ,  is computed as 
 

 
 

With the ROC, the Laplace transform of  is: 
  

 
 

It is clear that  does not have zero but has a pole at 
. Using (9.5), we substitute  to obtain 

 
 

 

As a result, the existence condition for Fourier transform of 
 is . Otherwise, the Fourier transform does not exist. 
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In general,  exists if its ROC includes the imaginary 
axis. If  includes  axis,  is required.  
 

-plane-plane-plane -plane-plane-plane

 
Fig.9.2: ROCs for  and  when  
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Example 9.3 
Determine the Laplace transform of  where  
is a real number. Then determine the condition when the 
Fourier transform of  exists. 
 

Using (9.1) and (2.22), we have 
 

 
  

Employing  yields  
  

 

 
It converges if  is bounded at , indicating that: 
 

 or  
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For ,  is computed as 
 

 
 

With the ROC, the Laplace transform of  is: 
  

 
 

It is clear that  does not have zero but has a pole at 
. Using (9.5), we substitute  to obtain 

 
 

 

As a result, the existence condition for Fourier transform of 
 is . Otherwise, the Fourier transform does not exist. 
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-plane-plane -plane-plane

 Fig.9.3: ROCs for  and  when  
 
We also see that  exists if its ROC includes the 
imaginary axis. 
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Example 9.4 
Determine the Laplace transform of , 
assuming that  and  are real such that . 
 
Employing the results in Examples 9.2 and 9.3, we have 
 

 

 
Note that there is no zero while there are two poles, 
namely,  and . 
 
If , then there is no intersection between  
and , and  does not exist for any . 
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-plane-plane

 
Fig.9.4: ROC for  

 
Does the Fourier transform of x(t) exist? 
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Example 9.5 
Determine the Laplace transform of . 
 

Using (9.1) and (2.19), we have 
 

 

 
Example 9.6 
Determine the Laplace transform of . 
 

Similar to Example 9.5, we have 
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Example 9.7 
Determine the Laplace transform of  
 

 

 
 

What are the ROCs in Examples 9.5, 9.6 and 9.7? 
 
 
 



H. C. So                                                                        Page 19                                         Semester B 2016-2017 

Finite-Duration and Infinite-Duration Signals 
 

Finite-duration signal: values of  are nonzero only for a 
finite time interval. If  is absolutely integrable, then the 
ROC of  is the entire -plane. 
 
Example 9.8 
Given a finite-duration  such that: 
 

 

 

It is also absolutely integrable: 
 

 
 

Show that the ROC of  is the entire -plane. 
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According to (9.7),  converges if 
 

 
 

We consider three cases, namely, ,  and . 
 
The convergence condition is satisfied at  because  
is absolutely integrable. 
 

For ,  for , and we have: 
 

 
 

because  is bounded and  is absolutely integrable.  
 
Similarly, for ,  for , and we have: 
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because  is bounded and  is absolutely integrable. 
 

As for all values of , (9.7) is satisfied, hence the ROC is the 
entire -plane. 
 

If  is not of finite-duration, it is an infinite-duration signal: 
 

 Right-sided: if  for  (e.g., Example 9.2 or 
 with ;  with ; 

 with ). 
 

 Left-sided: if  for  (e.g., Example 9.3 or 
 with ;  with ). 

 

 Two-sided: neither right-sided nor left-sided (e.g., 
Example 9.4). 
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Signal Transform ROC 
 1 All  

  All  
 

 
  

 
 

 
  

 

   
 

   
 

 
 

  
 

 
 

  
 

Table 9.1: Laplace transforms for common signals 
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Summary of ROC Properties 
 

P1. The ROC of  consists of a region parallel to the -
axis in the -plane. There are four possible cases, namely, 
the entire region, right-half plane (region includes ), left-
half plane (region includes ) and single strip (region 
bounded by two poles). 
 
P2. The Fourier transform of a signal  exists if and only if 
the ROC of the Laplace transform of  includes the -axis 
(e.g., Examples 9.2 and 9.3). 
 
P3: For a rational , its ROC cannot contain any poles 
(e.g., Examples 9.2 to 9.4). 
 
P4: When  is of finite-duration and is absolutely 
integrable, the ROC is the entire -plane (e.g., Example 9.7). 
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P5: When  is right-sided, the ROC is the right-half plane 
to the right of the rightmost pole (e.g., Example 9.2). 
 

P6: When  is left-sided, the ROC is left-half plane to the 
left of the leftmost pole (e.g., Example 9.3). 
 

P7: When  is two-sided, the ROC is of the form 
 where  and  are two poles of  

with the successive values in real part (e.g., Example 9.4).  
 

P8: The ROC must be a connected region.  
 

Example 9.9 
Consider a Laplace transform  contains three real poles, 
namely, ,  and  with . Determine all possible 
ROCs. 
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-plane-plane -plane-plane

-plane-plane -plane

 
Fig.9.5: ROC possibilities for three poles 
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Properties of Laplace Transform 
 

Linearity 
 

Let  and  be two Laplace transform 
pairs with ROCs  and , respectively, we have 
 

                    (9.10) 
 

Its ROC is denoted by , which includes  where  is 
the intersection operator. That is,  contains at least the 
intersection of  and . 
 

Example 9.10 
Determine the Laplace transform of : 
 

 
 

where  and . Find also the pole 
and zero locations. 



H. C. So                                                                        Page 27                                         Semester B 2016-2017 

From Table 9.1, we have: 
 

 

and 
 

 
According to the linearity property, the Laplace transform of 

 is 
 

 

 
There are two poles, namely  and  and there is one 
zero at . 
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Example 9.11 
Determine the ROC of the Laplace transform of  which is 
expressed as: 
 

 
 

The Laplace transforms of  and  are: 
 

 and  
 

We have: 
 

 
 

We can deduce that the ROC of  is , which 
contains the intersection of the ROCs of  and  
which is . Note also that the pole at  is 
cancelled by the zero at . 
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Time Shifting 
 

A time-shift of  in  causes a multiplication of  in  
 

               (9.11) 
 

The ROC for  is identical to that of .  
 

Example 9.12 
Find the Laplace transform of  which has the form of: 
 

 
 

Employing the time shifting property with  and: 
 

 

we easily obtain  
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Multiplication by an Exponential Signal 
 

If we multiply  by  in the time domain, the variable  
will be changed to  in the Laplace transform domain: 
 

                  (9.12) 
 

If the ROC for  is , then the ROC for  is , 
that is, shifted by . Note that if  has a pole (zero) 
at , then  has a pole (zero) at . 
 

Example 9.13 
With the use of the following Laplace transform pair: 
 

 
 

Find the Laplace transform of  which has the form of: 
 

 



H. C. So                                                                        Page 31                                         Semester B 2016-2017 

Noting that ,  can be written as: 
 

 
 

By means of the property of (9.12) with the substitution of 
 and , we obtain: 

 

 

and 
 

 

By means of the linearity property, it follows that 
 

 
  

which agrees with Table 9.1. 



H. C. So                                                                        Page 32                                         Semester B 2016-2017 

Differentiation in s Domain 
 

Differentiating  with respect to  corresponds to 
multiplying  by  in the time domain: 
 

           (9.13) 
 

The ROC for  is identical to that of . 
 

Example 9.14 
Determine the Laplace transform of . 
 
We start with using:  
 

    

and 
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Applying (9.13), we obtain: 
 

 

 
Further differentiation yields: 
 

 
 

The result can be generalized as: 
 

 
 

which agrees with Table 9.1. 
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Conjugation 
 

The Laplace transform pair for  is: 
 

          (9.14) 
 

The ROC for  is identical to that of . 
 
Hence when  is real-valued, . 
 
Time Reversal 
 

The Laplace transform pair for  is: 
 

                    (9.15) 
 
The ROC will be reversed as well. For example, if the ROC 
for  is , then the ROC for  is . 
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Example 9.15 
Determine the Laplace transform of . 
 

We start with using:  
 

    
  

Applying (9.15) yields 
 

 
 

Convolution 
 

Let  and  be two Laplace transform 
pairs with ROCs  and , respectively. Then we have: 
 

                        (9.16) 
 

and its ROC includes . The proof is similar to (5.22). 
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Differentation in Time Domain 
 

Differentiating  with respect to  corresponds to 
multiplying  by  in the -domain: 
                     
 

                         (9.17) 

 
Its ROC includes the ROC for . 
 
Repeated application of (9.17) yields the general form: 
                   
 

                         (9.18) 
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Example 9.16 
Use the Laplace transform of  to determine the Laplace 
transform of .  
 
According to (2.24): 
 

 

  
Substituting  into Example 9.2 or Table 9.1, we have: 
 

 

 
Employing (9.17) and (2.24) yields 
 



H. C. So                                                                        Page 38                                         Semester B 2016-2017 

 
 

where the ROC is the entire -plane. 
 
Note that the result can be easily extended to the derivative 
of . For example,  
 

 

 
Extension using (9.18) yields: 
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Integration 
 
On the other hand, if we perform integration on , this 
corresponds to dividing  by  in the -domain: 
                    

                        (9.19) 

 
If the ROC for  is , then the ROC for  includes 

. 
 
Example 9.17 
Prove (9.19), that is, the integration property of Laplace 
transform. 
 
We first notice that  
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because  only for . 
 
Applying the convolution property of (9.16) and noting from 
Example 9.16 that  
 

 
 

We then have: 
 

 

 
where the ROC includes the intersection of ROC of  and 

. 
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Example 9.18 
Determine the Laplace transform of . 
 

From Example 9.17, we know that  
 

 
 

Employing (9.19) and 
 

 
 

We then have: 
 

 
 

Alternatively, this can be easily obtained using (9.16). Note 
that its generalization is: 
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Causality and Stability Investigation with ROC  
 
Suppose  is the impulse response of a continuous-time 
linear time-invariant (LTI) system. Recall (3.18), which is 
the causality condition: 
 
                                    (9.20) 
 
If the system is causal and  is of infinite duration, the 
ROC must be the right-half plane, i.e., the region of the 
right of the rightmost pole, indicating it is right-sided. Note 
that causality implies right-half plane ROC but the converse 
may not be true. 
 
Nevertheless, if  is rational and its ROC is the right-half 
plane, then the system must be causal. 
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Example 9.19 
Discuss the causality of the two LTI systems with impulse 
responses  and . Their Laplace transforms are: 
 

 
 

For , we use Table 9.1 or Example 9.2 to obtain: 
 

 
 
which corresponds to a causal system. We can also know its 
causality because  is rational and its ROC is the right-
half plane. 
 
On the other hand, using the time-shifting property and the 
above result, we have: 
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That is, 
 

 
 
which corresponds to a non-causal system. This also aligns 
with the above discussion because  is not rational 
although its ROC is also right-half plane. 
 
Recall the stability condition in (3.20): 
 
                                   (9.21) 
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(9.21) corresponds to the existence condition of the Fourier 
transform of . According to P2, this means that the ROC 
of  includes the -axis. 
 
That is, a LTI system is stable if and only if the ROC of  
includes the -axis. 
 
Example 9.20 
Discuss the causality and stability of a LTI system with 
impulse response . The Laplace transform of  is: 
 

 

 
As the ROC of  is not specified, we investigate all 
possible cases, i.e., ,  and . 
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For , we use Table 9.1 to obtain: 
 

 

and 
 

 
where both ROCs agree with . Combining the 
results yields: 
 

 
 

Because of  and  is approaching unbounded as 
, this system is non-causal and unstable. 
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Similarly we obtain for : 
 

 

and 
 

 
Combining the results yields: 
 

 
 
Due to , the system is not causal. While  is 
absolutely integrable in  and  is absolutely 
integrable in , the system is stable. 
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Finally, for , we use: 
 

 

and 
 

 
Combining the results yields: 
 

 
 
This system is causal but not stable due to . 
 
To summarize, a causal system with rational  is stable if 
and only if all of the poles of  lies in the left-half of the 
-plane, i.e., all of the poles have negative real parts.  
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Inverse Laplace Transform 
 

Inverse Laplace transform corresponds to finding  given 
 and its ROC. 

 

The Laplace transform and inverse Laplace transform are 
one-to-one mapping provided that the ROC is given: 
 
                                     (9.22) 
 
There are 3 commonly used techniques to perform the 
inverse Laplace transform. They are 
 

1. Inspection 
 

2. Partial Fraction Expansion 
 

3. Contour Integration 
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Inspection 
 

When we are familiar with certain transform pairs, we can 
do the inverse Laplace transform by inspection. 
 
Example 9.21 
Find  if its Laplace transform has the form of: 
 

 
 
Reorganizing  as: 
 

 
 
Using Table 9.1 and linearity property, we get: 
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Partial Fraction Expansion 
 

The technique is identical to that in inverse  transform but 
now we consider that  is a rational function in : 

                                     (9.23) 

 
To obtain the partial fraction expansion from (9.23), the 
first step is to determine  nonzero poles, . 
 

There are 4 cases to be considered: 
 

Case 1:   and all poles are of first order 
 

 can be decomposed as: 
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                              (9.24) 

 

For each first-order term of , its inverse Laplace 
transform can be easily obtained by inspection. 
 
The  can be computed as:  
 

                                     (9.25) 
 
 

Case 2:   and all poles are of first order 
 

In this case,  can be expressed as: 
 

                       (9.26) 
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   are obtained by long division of the numerator by the 
denominator, with the division process terminating when 
the remainder is of lower degree than the denominator. 
 

  can be obtained using (9.25). 
 

Case 3:   with multiple-order pole(s) 
   

Assuming that  has a -order pole at  with , 
then  can be decomposed as: 
 

                       (9.27) 

 

 When there are two or more multiple-order poles, we 
include a component like the second term for each 
corresponding pole 
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  can be computed according to (9.25) 
 

  can be calculated from: 
 

                            (9.28) 

 
Case 4:   with multiple-order pole(s) 
 

Assuming that  has a -order pole at  with , 
then  can be decomposed as: 
 

                (9.29) 

 
The ,  and  can be calculated as in Cases 1, 2 and 3.  
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Example 9.22 
Find  if its Laplace transform has the form of: 
 

 

 
We can express  as: 
 

 

 
Employing (9.25), ,  and  are: 
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and 
 

 
Together with the ROC of , we obtain: 
 

 
 
Example 9.23 
Find  if its Laplace transform has the form of: 
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First we perform long division to obtain: 
 

 

 
The last term can be further decomposed as: 
 

 

 
Employing (9.25),  and  are: 
 

 

and 
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Together with the ROC of , we obtain: 
 

 

 
Example 9.24 
Find  if its Laplace transform has the form of: 
 

 

 
Accordingly to (9.27), we can express  as: 
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Employing (9.25),  is: 
 

 

 
Applying (9.28),  and  are: 
 

  

and 

 

 
Together with the ROC of , we obtain: 
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Transfer Function of Linear Time-Invariant System 
 
A LTI system can be characterized by the transfer function, 
which is a Laplace transform expression. 
 
Starting with the differential equation in (3.25) which 
describes the continuous-time LTI system:  
 
 

                              (9.30) 

 

Applying Laplace transform on (9.30) with the use of the 
linearity property and (9.18), we have:  
         

                       (9.31) 
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The transfer function, denoted by , is defined as: 
 

                          (9.32) 

 

The system impulse response  is given by the inverse 
Laplace transform of  with an appropriate ROC, that is, 

, such that . This suggests that we 
can first take the Laplace transforms of  and , then 
multiply  by , and finally perform the inverse 
Laplace transform of  to obtain . 
 

Comparing with (5.29), we see that the system frequency 
response can be obtained as  if it exists. 
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Example 9.25 
Determine the transfer function for a LTI system whose 
input  and output  are related by: 
 

 

 
Taking Laplace transform on the both sides with the use of 
the linearity and differentiation properties,  is: 
 

 

 
Note that there are two ROC possibilities, namely,  
and , and we cannot uniquely determine . 
However, if it is known that the system is causal,  can be 
uniquely found because the ROC should be . 
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Example 9.26 
Find the differential equation corresponding to a continuous-
time LTI system whose transfer function is given by 
 

 

 
Let . Performing cross-multiplication and 
inverse Laplace transform, we obtain: 
 

 
 
Examples 9.25 and 9.26 imply the equivalence between the 
differential equation and transfer function. 
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Example 9.27 
Compute the impulse response  for a LTI system which is 
characterized by the following equation: 
 

 
 

Applying Laplace transform on the input-ouput equation 
using the linearity and time shifting properties,  is: 
 

 
 

From Table 9.1, there is only one ROC possibility, i.e., 
entire -plane. Taking the inverse Laplace transform on 
yields: 
 

 
 
which agrees with Example 3.10. 
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Example 9.28 
Compute the impulse response  for a LTI system which is 
characterized by the following equation: 
 

 

 
Noting that 
 

 
 
Taking the Laplace transform on the input-output 
relationship and using convolution as well as time-shifting 
properties, we get: 
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Due to the convolution property, we can deduce that the 
ROC of  is .  
 
Finally, taking the inverse Laplace transform on  yields: 
 

 
 
which agrees with Example 3.11. 
 
Example 9.29 
Compute the output  if the input is  with  
and the LTI system impulse response is  . 
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The Laplace transforms of  and  are 
 

 

and    
 

 

As a result, we have: 
 

 
 

Taking the inverse Laplace transform of  with the ROC of 
 yields: 

 

 
 

which agrees with Example 3.16. 



H. C. So                                                                        Page 1                                         Semester B 2016-2017 

Concluding Remarks 
 
Signals in Time Domain 
 
For signals which are functions of time, there are two main 
types: continuous-time and discrete-time. 
 
A continuous-time signal  is defined on a continuous 
range of time , i.e.,  has a value for any . 
It can be observed in real world and examples include 
speech, music, power line and ECG. 
 
A discrete-time signal  is defined only at discrete instants 
of time where  is integer. It can be obtained from sampling 
a continuous-time signal or generated using computer. 
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Continuous-Time and Discrete-Time Signal Conversion  
 

 can be obtained from a continuous-time signal  via 
sampling: 
 

       (10.1) 
 
If  is bandlimited such that  for  and if the 
sampling frequency , then  can be reconstructed 
from : 
 

                           (10.2) 
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Signal Representation in other Domains 
 
Apart from the time domain, we can also study signals in 
other domains. 
 
For , it can be converted to  and . 
 
In the Laplace transform domain, the conversion is: 
 
                         (10.3) 

 
Together with the region of convergence (ROC),  and 

 correspond to a one-to-one mapping. That is, both  
and  with ROC are equivalent.  
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There are at least two advantages of Laplace transform: 
 
 It generalizes the Fourier transform, that is, substituting 

 yields . We can see whether the ROC includes 
the -axis to check the existence of Fourier transform. 
The inverse Laplace transform techniques can be applied 
to convert  back to . 
 

 It facilitates the analysis of linear time-invariant (LTI) 
systems. In the time domain, the input , output  
and impulse response  are characterized by 
convolution but in the Laplace transform, they have 
simpler relation: 

  
                

                        (10.4) 
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If  is periodic, then it can be represented as Fourier 
series: 
 

                       (10.5) 
 

 
which is a linear combination of harmonically related 
complex sinusoids. The Fourier series coefficients are: 
 
 

                 (10.6) 

 
where  is the fundamental period and  is the 
fundamental frequency. 
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We can write this pair as: 
 
                         (10.7) 
 
because  contain the amplitude information of all 
frequency components of . For example, we know the 
strength of  from . 
 
If  is aperiodic, then it can be represented as Fourier 
transform as: 

                              
   (10.8) 

 
where  indicates the amplitude at frequency . 
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Even if  is periodic, it can also be represented using 
Fourier transform as: 
 
              (10.9) 

 
Nevertheless, we still see that  is characterized by  
as in the Fourier series in (10.7). 
 
The Fourier transform is related to Laplace transform via: 
 
                                   (10.10) 
 
Hence we can use the techniques in Laplace transform to 
compute Fourier transform and inverse Fourier transform. 
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It is worth mentioning that although  does not 
naturally arise in real world, its magnitude  can be 
observed using electronic equipment, namely, spectrum 
analyzer. 
 
Example 10.1 
Given the frequency response of a continuous-time LTI 
system: 
 

 

 
Find the system impulse response . 
 
Although inverse Fourier transform in (10.8) can be 
employed to determine , integration is needed. 
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Another approach which is computationally simpler is to 
make use of Laplace transform. Via the substitution of 

, the system transfer function is: 
 

 

 
As  exists, we know that the ROC should include the 
-axis and hence is . From Table 9.1, we easily 
obtain: 
 

 
 
This is consistent with Examples 5.3, 5.6 and 9.2. 
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Example 10.2 
Determine the continuous-time signal  if its Fourier 
transform has the form of: 
 

 

 
Via substitution of , the Laplace transform of  is: 
 

 

 
As  exists, we know that the ROC should include the 
-axis and hence is . 
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By means of partial fraction expansion, we obtain: 
 

 
 
Taking the inverse Laplace transform yields: 
 

 
 
As the Laplace transform generalizes the Fourier transform, 
the properties of the Laplace transform are similar to those 
of Fourier transform and Fourier series. 
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For , it can be converted to  and . 
 

In the  transform domain, the conversion is: 
 

                         (10.11) 

 

Together with the ROC,  and  correspond to a one-
to-one mapping. That is, both  and  with ROC are 
equivalent.  
 

There are at least two advantages of  transform: 
 

 It generalizes the discrete-time Fourier transform, 
(DTFT), that is, substituting  yields . We can 
see whether the ROC includes the unit circle or  to 
check the existence of DTFT. The inverse  transform 
techniques can be applied to convert  back to . 
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 It facilitates the analysis of LTI systems. In the time 
domain, the input , output  and impulse response 

 are characterized by convolution but in the 
transform, they have simpler relation: 

  
                

                        (10.12) 
 
 

We use DTFT to convert  to frequency domain: 
                              

   (10.13) 

 
where , which is periodic with a period of , indicates 
the amplitude at frequency . 
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The DTFT is related to  transform via: 
 
                                   (10.14) 
 
Hence we can use the techniques in  transform to compute 
DTFT and inverse DTFT. 
 
Example 10.3 
Given the frequency response of a discrete-time LTI 
system: 
 

 

 
Find the system impulse response . 
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Although inverse DTFT in (10.13) can be employed to 
determine , integration is needed. 
 
Another approach which is computationally simpler is to 
make use of  transform. Via the substitution of , the 
system transfer function is: 
 

 

 
As  exists, we know that the ROC should include the 
unit circle and hence is . Using Table 8.1 and time-
shifting property, we easily obtain: 
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Example 10.4 
Find the discrete-time signal  if its DTFT has the form of: 
 

 

 
Via substitution of , the  transform of  is: 
 

 

 
Clearly there is only one ROC, which is . Applying 
inverse  transform on  yields: 
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which aligns with Example 6.7. 
 
As the  transform generalizes the DTFT, the properties of 
the  transform are similar to those of DTFT. 
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LTI System Analysis with Transforms 
 
In the time domain, LTI system is characterized by 
convolution: 
 
                     (10.15) 

or 
                      (10.16) 

 

In the Laplace (or Fourier) transform and  transform (or 
DTFT) domains, (10.15) and (10.16) become multiplication: 
  
                

                            (10.17) 
 

and                 
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                            (10.18) 
 
 

Equations (10.17) and (10.18) indicate that we may obtain 
 (or ),  (or ) and  (or ) in an easier 

manner. 
 
Note that even if the LTI systems are not stable,  and 

 still exist and their ROCs will not include the -axis 
and unit circle, respectively, while  and  do not 
converge. 
 
Example 10.5 
Determine the transfer functions of the continuous-time and 
discrete-time LTI systems with impulse responses: 
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and 
 

 
It is clear from (3.20) and (3.21) that the systems are 
unstable because they are not absolutely summable and 
integrable: 
 

                                 

and 
                                 

 
Taking Laplace transform on  yields: 
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As  does not include the -axis,  does not 
exist. This conclusion can also be obtained because (9.9) is 
not satisfied. 
 
Taking  transform on  yields: 
 

 

 
As  does not include the unit circle,  does not 
exist. This conclusion can also be obtained because (8.9) is 
not satisfied. 
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Example 10.6 
Consider a continuous-time LTI system with impulse 
response , input  and output . Calculate  when 

. 
 
 

The Laplace transforms of both  and  are 
 

 
 

As a result, we have: 
 

 
 

According to Table 9.1, we obtain: 
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Example 10.7 
Consider a discrete-time LTI system with impulse response 

, input  and output . Calculate  when 
. 

 
 

The  transforms of both  and  are 
 

 
 

As a result, we have: 
 

 

 
According to Table 8.1 and time-shifting property, we 
obtain: 
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Finally, we have: 
  

 
 
Example 10.8 
Consider a cascade system of two discrete-time LTI systems 
with impulse responses  and . Let the system input 
and output be  and , respectively. Determine the 
overall impulse response  and transfer function  if 

. Find the difference equation that relates 
 and .  
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The overall impulse response is: 
 

 
 
Using the result in Example 10.7, we have: 
 

 
 
From Example 10.7 again, the overall transfer function is: 
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Note that it is equivalent to use  and  in the block 
diagram: 
 

 
 
As , we perform cross-multiplication and 
inverse  transform to obtain: 
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Example 10.9 
Consider a cascade system of two continuous-time LTI 
systems with impulse responses  and . Let the 
system input and output be  and , respectively. 
Determine the overall impulse response  and transfer 
function  if . Find the differential 
equation that relates  and . 
 

 
 
Using Example 10.6, the overall impulse response is: 
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and the overall transfer function is: 
 

 

 
We can also use  and  in the block diagram: 
 

 
 
As , we have: 
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