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Abstract

I Problem Studied - Implementing multi-user MIMO scheduler

schemes on TI TCI6636K2H eight core SoC

I Issues addressed -
I Complexity involved in implementing scheduling algorithms -

low complex algorithm design
I How to partition scheduler processing among eight cores in TI

TCI6636K2H eight core SoC

I Summary - Proposed implementation supports up to 100

users in the system with 4× 4 MIMO configuration
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Introduction and Motivation

I Current standards are moving towards multi-antenna systems

due to its numerous advantages

I To avail the benefits, spatially multiplexing multiple user

streams are considered

I In order to do so, efficient precoding and user subset are to be

identified

I In this work, we analyze the computational needs of different

MU-MIMO scheduling algorithms for a single scheduling block

I We evaluate algorithm complexity by implementing on TI

TCI6636K2H eight core SoC

c© Centre for Wireless Communications (CWC)



5/19

Notations used

I We consider a single-cell multi-user MIMO scenario

I Let K be the total number of users with NR antenna elements

I Let κ be the total available spatial streams for a user k, given

by κ = min(NT ,NR)

I Hk̂ ∈ CNR×NT be the channel between BS and user k̂ ,∀k ∈ U
I Let A ⊂ U be the subset of users chosen by scheduling

algorithm
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System Model

I Let Hk̂ = Uk̂Dk̂V
H
k̂

be singular value decomposition of Hk̂

I Let k = κk̂ + i be the virtual user corresponding to the spatial

stream i ∈ {0, . . . , κ− 1}
I Using this, we denote virtual channel hk = Uk̂(i)HHk̂ , where

Uk̂(i) corresponds to the column i of Uk̂

I Now, the received symbol d̂k of virtual user k is given as

d̂k = hkmkdk +
∑

i∈A\{k}

hkmidi + nk

I where mk ∈ CNT×1 is the transmit precoder of user k
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Overview of Scheduling Algorithms

I To minimize interference, only a subset of users are allowed

for transmission

I Subset selection with certain objective requires exhaustive

search

I Scheduling can inherently be performed by precoder designs -

efficient iterative algorithms are available

I However, as the user count increases, complexity scales up

significantly

I Hence, precoders are to be designed only for a subset of users

chosen by scheduling algorithms
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Figure: Comparison of Scheduler Algorithms for K = 100 users.
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Overview of TIC6636K2H Eight Core SoC

I Four ARM Cortex A15 operating at 1.4GHz

I Eight C66x CorePacs DSP Core Subsystems 1.2GHz

I 32KB L1P and L1D Cache + 1024KB L2 Cache Per CorePac

I 6 MB Multicore Shared Memory (MSM) SRAM Memory

Shared by DSP CorePacs and ARM CorePac

I TeraNet Fabric interconnect between core subsystems and

peripherals

I DDR3 memory interface
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Partitioning of Algorithm

I Computationally, SVD is the most demanding operation

I SVD is performed by repeated QR factorization (16 iterations)

I In order to utilize the SoC efficiently, SVD is shared among

eight C66x cores

I SVD processing begins with a Chip Level Interrupt Controller

(CIC) interrupt from Core(0)

I Channel matrices are stored in MSM SRAM memory, which is

accessible to all C66x cores

I Upon completion, Core(0) carries out scheduler design until

completion
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Implementation of Scheduler Algorithm

I Each core runs separate copy of SYS-BIOS, i.e., in

homogeneous Asynchronous Multiprocessing (AMP) mode

I Inter core communication is facilitated using multi-core SDK

3.0 software stack

I Storage address of the channel buffer in MSM SRAM is fixed

across cores using #pragma location

I Avoids the usage of SharedMem and Notify modules to

achieve the same result

I Inter-Processor Communication (IPC) module is used to

synchronize the cores upon BIOS Start() function call

I IPC start() and IPC attach() function calls are used for

multi-core synchronization
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Core(0) Implementation

I Signed Q1.15 format for real and imaginary entries
I CIC interrupt from Core (0) is used to notify the availability of

channel buffer to other cores
I Cache write-back is performed upon completing SVD

processing by all cores
I Upon completion, Core (0) proceeds with scheduling

algorithm processing
I However, in a dynamic scenario, CIC interrupt can be used to

notify the completion from other cores
I Number of SVD’s per core -

I Core(0) -

⌊
K

NC

⌋
+

(
K −

⌊
K

NC

⌋
× NC

)
I Other cores -

⌊
K

NC

⌋
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Figure: Task scheduling over NC = 8 cores.
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Table: Scheduling Complexity for K = 100 users (msec) with C66x

operating at 1.2GHz

NT × NR λ SVD (1) SVD (8) Greedy SP PIPD

8× 4 4 22.68 2.90 0.075 0.524 0.469

8× 4 2 22.68 2.90 0.064 0.325 0.268

8× 2 2 6.055 0.79 0.063 0.325 0.266

8× 2 1 6.055 0.79 0.058 0.226 0.166

4× 4 4 15.81 2.07 0.045 0.168 0.167

4× 4 2 15.81 2.07 0.034 0.102 0.098

4× 2 2 4.844 0.64 0.034 0.102 0.097

4× 2 1 4.844 0.64 0.029 0.069 0.063

I λ - number of spatial streams used in scheduling method (only

dominant streams are considered after sorting singular values)
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Conclusion from Implementation Results

I Current design can handle all scheduling algorithms within 0.5

msec duration

I Using 8 parallel cores - support 8 scheduling blocks (SBs) in

0.5 msec (well within LTE-A subframe duration of 1 msec)

I Complexity is mainly attributed by the SVD processing

I With current implementation, it can support the MIMO

configuration of 8× 2 system for K = 100 users

I ZYNQ ZC702 - five SVD block on programming logic and

scheduling block on ARM - can support only 50 users for a

8× 2 system

I ZYNQ ZC702 performance degradation is due to the clocking

of programming logic - (150MHz) and ARM (667 MHz) only
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Conclusions

I We studied the implementation of different state-of-the-art

MU-MIMO scheduling algorithms on TCI6636K2H

I Complexity is mainly attributed to SVD decomposition of

channel matrices

I Using parallel implementation, current design can support 100

SVD of 8× 2 matrices in 6.055 msec

I We have demonstrated that with the current implementation,

all scheduling schemes meet the real-time requirements

I Even though we considered only single SB, the above

implementation is scalable.
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Successive Projections†

I Based on Gram-Schmidt Orthogonalization Procedure

I In each iteration, user channel vectors are projected on to the

subspace orthogonal to the span of channel vectors already

chosen

I Upon projecting on to the orthogonal subspace, resulting

vector with maximum norm is chosen as the candidate user

N(A) = INT
− F

(
FHF

)−1
FH

I where F is the matrix formed by stacking channel vector of

already chosen users in A
†T. Yoo and A. Goldsmith, ”On the Optimality of Multi-Antenna Broadcast

Scheduling using zero-forcing Beamforming, in IEEE J. Sel. Areas Commun., vol. 24,

no. 3. IEEE, march 2006.
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Product of Independent Projections (PIPD)†

I As compared to the subspace projection in previous algorithm,

vector projections are considered

I Each user channel is projected on to unit vector in the

direction of already chosen users channel

I Selection is based on the product of independent vector

projections

I Performs significantly closer to successive projections method

I Due to vector projections, inverse calculation is not required -

low complexity

†Venkatraman, G., Tolli, A., Janhunen, J., and Juntti, M. ”Low Complexity

Multi-User MIMO Scheduling for Weighted Sum Rate Maximization”, in Proc. of

European Signal Process. Conference (EUSIPCO), pp. 820–824, 2013
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