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ABSTRACT

i-Vector feature representation with probabilistic linear dis-
criminant analysis (PLDA) scoring in speaker recognition
system has recently achieved effective permanence even on
channel mismatch conditions. In general, experiments carried
out using this combined strategy employ linear discriminant
analysis (LDA) after the i-Vector extraction phase to sup-
press irrelevant directions, such as those introduced by noise
or channel distortions. However, speaker-related and -non-
related variability present in the data may prevent LDA from
finding the best projection matrix. In this study, we exclu-
sively use support vectors of each class to find the optimum
linear transformation. Post-processing of the i-Vectors by dis-
criminant analysis via support vectors (SVDA) and traditional
LDA is evaluated on NIST2010 speaker recognition evalu-
ation (SRE) core and extended core (coreext) conditions.
In addition, truncated coreext test data is used to examine
the performance of the system for both long and short du-
ration test segments. Computed equal error rate (EER) and
minimum detection cost function (minDCF) criteria confirm
consistent improvement of SVDA over traditional LDA. The
relative improvement in terms of EER and minDCF with
SVDA are about 32% and 9%, respectively.

Index Terms— i-Vector/PLDA speaker recognition, dis-
criminant analysis, support vectors.

1. INTRODUCTION

Over the past decade, the importance of intra-speaker (such
as emotional and stress conditions, health, aging) and inter-
speaker (noise, session, or channel affects) variability have
made speaker recognition state-of-the-art gradually migrate
from Gaussian mixture model (GMM)-universal background
model (UBM) [1] to joint factor analysis (JFA) [2] and i-
Vector [3] solutions with cosine distance scoring or support
vector machine (SVM) classification [3]; and finally to i-
Vector with probabilistic discriminant analysis (PLDA) scor-
ing [4, 5]. Extracted i-Vectors usually are post-processed
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by linear discriminant analysis (LDA) in order to reduce the
dimensionality based on the Fisher criterion [6] that in turn
will help to compensate for channel variability.

The traditional LDA finds the transformation that mini-
mizes the ratio of the within to between class scatters. LDA
assumes speaker classes have a Gaussian distribution and
share the same covariance matrix. Many variations of dis-
criminant analysis have been proposed to partly relax the
LDA assumptions. Kernel discriminant analysis or general-
ized discriminant analysis (GDA) [7, 8] finds a non-linear
transformation, heterocedastic LDA (HLDA) [9] employs
different covariance matrices for different classes, mixture
discriminant analysis (MDA) [10] assumes the distribution of
each class is a mixture of Gaussians.

In the i-Vector based system, the effectiveness of various
discriminant analysis methods has been studied. [12] em-
ployed non-parametric or nearest neighbor discriminant anal-
ysis (NDA). The experimental results show that NDA out-
performs LDA especially when data are multimodal [13]. In
addition, [14] used source-normalized LDA (SN-LDA); and
[15] employed weighted LDA (WLDA) and weighted SN-
LDA which are shown to be more effective in especial condi-
tions. Moreover, we studied GDA in [11] previously.

Here, we apply another variation of LDA named dis-
criminant analysis via support vectors (SVDA) into the
i-Vector/PLDA system. SVDA calculates the within and
between class covariance matrices using only the support
vectors. In contrast to LDA, SVDA captures the boundary
of classes (which is important in classification), and per-
forms well for small sample size problem which is present in
SRE2010 task (i.e. when the dimensionality is greater than
sample size). The idea of using support vectors with discrim-
inant analysis has been previously introduced in [16] which
made significant improvement over LDA. In this study, the
effectiveness of SVDA in the i-Vector/PLDA system has been
evaluated on NIST2010 speaker recognition evaluation (SRE)
[17] task with the telephony condition for both long and short
duration test segments. Compared to the above-mentioned
methods, from the aspect of the number of hyper-parameters,
training time, and also the equal error rate (EER) and min-
imum detection cost function (minDCF) criteria, SVDA is
shown to be effective.
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Fig. 1. Overview of the i-Vector/PLDA system. Train data used for modeling UBM, total variability (TV) matrix, LDA (or
SVDA) and PLDA, enrollment and test data used for evaluation of the system [11].

In this paper, first an overview of our i-Vector/PLDA sys-
tem is discussed in Sec. 2. Next, Sec. 3, 4 introduce LDA and
SVDA, respectively. The experimental setup and results are
presented in Sec.5, and finally conclusions and future work
are summarized in Sec. 6.

2. I-VECTOR/PLDA SPEAKER RECOGNITION

The overall block-diagram of i-Vector/PLDA speaker recog-
nition used in this study is depicted in Fig. 1. The speaker-
and channel-dependent GMM supervector in the i-Vector
configuration is factorized as [3],

M = m+ Tw, (1)

where m is the UBM speaker- and channel-independent su-
pervector, T is the low rank total variability matrix (TV) that
maps the high dimensional GMM supervector into lower di-
mensional i-Vector representation w.

Using training data, the UBM and TV matrix will be mod-
eled by expectation maximization (EM) method. In the E-
step, w is considered as a latent variable with normal prior
distribution N(0, I). Eventually, the i-Vectors will be esti-
mated as the mean of posterior distribution of w, that is [3],

ŵ(u) = (I + TT Σ−1N(u)T )−1TT Σ−1S(u), (2)

where for utterance u, the terms N(u) and S(u) represent ze-
roth and centralized first order Baum-Welch statistics respec-
tively, and Σ is the covariance matrix of UBM. Thereafter, i-
Vectors are post-processed by applying LDA/SVDA and nor-
malizing their lengths [18]. Finally, in the recognition phase
given two i-vectors ŵ1 and ŵ2 we need to verify that these
i-Vectors have been produced by the same speaker (target) or
not (nontarget), that can be identified using the following log
likelihood ratio,

log−likelihood = log
p(ŵ1, ŵ2|target)

p(ŵ1, ŵ2|nontarget)
(3)

3. LINEAR DISCRIMINANT ANALYSIS (LDA)

LDA is a widely-used statistical method for dimensionality
reduction in classification and pattern recognition problems.
It finds the exact optimal linear transformation when each
class has a Gaussian distribution with a common covariance
matrix. Traditional LDA defines the speaker class separation
criterion in direction of A as,

λ =
ATSbA

ATSwA
, (4)

where Sb and Sw represent between and within class covari-
ance matrices. The projection matrix A that contains the k
eigenvectors corresponding to the k largest eigenvalues of
S−1w Sb is the solution for LDA optimization problem.

For feature vectors x, the between and within class scat-
ters are calculated by,

Sb =

C∑
c=1

nc(µc − µ)(µc − µ)T (5)

Sw =

C∑
c=1

∑
k∈c

(xk − µc)(xk − µc)
T , (6)

where C is the total number of speaker classes, nc is the num-
ber of samples in class c, µ is the total mean of all samples,
µc is the mean of samples in class c.

LDA imposes strict assumptions in finding the linear
transformation. The following items express our main con-
cerns regarding LDA that will be revised by the proposed
alternative discriminant analysis approach. First, assum-
ing Gaussian distribution for speaker classes is simplifying.
Second, the imbalanced classes (one class has many samples
while the other may contain a few ones) always was a problem
in pattern recognition area; here, we will attempt to balance
the samples in each class as far as possible. Third, small
sample size problem that is present in NIST SRE2010 task
cause difficulties for LDA. Forth, assuming discriminatory



Table 1. statistics of data used for training the models and evaluating the system. Trials, enrollment and data used for training
LDA/SVDA/PLDA are restricted to male speakers.

Enrollment/Test UBM-TV LDA/SVDA/PLDA Enrollment Trials
Spkrs Segments Spkrs Segments Spkrs Target nonTarget

Core/Core 5756 57273 1115 13605 2426 353 13707
Coreext/3,5,10,20,40s,full 5756 57273 1115 13605 5237 3465 175873

information is all included in the centroid of classes is not
applicable to real-world problems; covariance or boundary
structure of classes should not be disregarded completely.

Therefore, for accounting the above-mentioned limita-
tions, discriminant analysis via support vectors (SVDA) [16]
has been adopted into the i-Vector/PLDA structure. SVDA
only uses support vectors to calculate the within and between
covariance matrices. In addition, with SVDA the degree of
generalization could be controlled in solving SVM problem
which has a valuable advantage.

4. DISCRIMINANT ANALYSIS VIA SUPPORT
VECTORS (SVDA)

The class separation measure for SVDA is similar to the LDA;
however, only distinct support vectors will be used to calcu-
late the within class and between class covariance matrices.
More specifically, if we define wc1c2 =

∑l
i=1 yiαixi as the

optimal direction to classify two classes c1 and c2 by a linear
SVM (yi represents target value (+1 for first class and -1 for
second class) of learning pattern xi and αi is its coefficient),
then the between class covariance matrix will be updated as,

Vb =
∑

1≤c1≤c2≤C

wc1c2w
T
c1c2 . (7)

Also, let X̂ = [x̂1, x̂2, ..., x̂N̂ ] be all the support vectors and
N̂ represents their number. Then, the within class covariance
matrix will be formulated as,

Vw =

C∑
c=1

∑
i∈Îc

(x̂i − µ̂c)(x̂i − µ̂c)
T (8)

where Îc includes the index of support vectors in class c, and
µ̂c denotes the mean of them. Finally, similar to LDA, the op-
timum transformation Â will contain the k eigenvectors cor-
responding to the k largest eigenvalues of V −1w Vb

From the aspect of classification, [16] shows SVM per-
forms better than LDA. For multi-class problems, Fisher cri-
terion in LDA finds the subspace that gives well-separated
classes more importance than those are closer. Therefore, the
classes that are already distinct will move away further from
each other; however, the closer classes will not be treated the
same. In contrast, SVM focuses more on hardly-separable
classes. From this viewpoint, we expect that the transforma-
tion find by the SVDA will work better for closer classes.

Moreover, the within class and between class covariance
matrices calculated by SVDA only uses support vectors in-
stead of using all the training samples. Obviously, SVDA
finds the discriminatory directions using the boundary struc-
ture of classes; and also SVM is a well-known method for
small sample size problem [16]. On the other hand, while
solving SVM problem we can adjust the tolerance of classifi-
cation error; therefore, generalization can be controlled con-
veniently in SVDA rather than LDA.

5. EXPERIMENTS

5.1. Experimental setup

The extracted feature vectors contain 19 Mel-frequency fea-
tures as well as the frame energy appended with delta and
delta-delta coefficients. The window length and shift size are
25-ms and 10-ms, respectively. In addition, 3-s sliding win-
dow cepstral mean normalization has beed applied on feature
vectors. Non-speech frames are also discarded using energy-
based voice activity detection (VAD).

2048-mixture full covariance UBM and total variability
matrix have been trained using both male and female data col-
lected from SRE2004, 2005, 2006, 2008 and Switchboard II
phase 2,3 and Switchboard Cellular Part1 and Part2. Next,
600-dimensional i-Vectors have been extracted. The dimen-
sion of i-Vectors then reduced to 400 using LDA/SVDA tech-
nique. Data used for training LDA, SVDA and PLDA has
been restricted to the male speakers (for the sake of tractabil-
ity) from SRE2004, SRE2005, SRE2006, and 2008. To eval-
uate the system, we used male trials of core and extended core
conditions of SRE2010. All the experiments are carried out
on telephony condition (condition 5) of NIST SRE2010.

The enrollment/test condition combinations used in the
experiments and the statistics of training and enrollment data,
as well as trials are provided in Table 1. In addition, to evalu-
ate the performance of the system on short duration test seg-
ments, after applying VDA, the first 3, 5, 10, 20 and 40s of ex-
tended core test data have been extracted. For training SVM
the publically available LIBSVM [19] toolkit has been used.

5.2. Experimental results

This subsection provides the experimental results comparing
SVDA and LDA. We used equal error rate (EER) and mini-



Table 2. EER/minDCF results comparing LDA and SVDA. The dimension of i-Vectors is reduced from 600 to 400.
Enrollment/Test LDA SVDA

traditional 1-vs-1 weighted 1-vs-1 1-vs-rest
Core/Core 1.66 / .037 1.13 / .0399 1.25 / .0364 1.42 / .0368

Coreext/Coreext 1.5 / .0297 1.35 / .0308 1.3 / .0287 1.39 / .029
Coreext/Coreext3sec 14.5 / .0984 14.22 / .0974 14.23 / .0974 14.2 / .0975
Coreext/Coreext5sec 9.71 / .0924 9.64 / .0915 9.55 / .0909 9.81 / .092

Coreext/Coreext10sec 5.61 / .0759 5.58 / .0749 5.60 / .0737 5.72 / .076
Coreext/Coreext20sec 3.17 / .0585 3.12 / .0574 3.17 / .0573 3.35 / .0593
Coreext/Coreext40sec 2.48 / .0448 2.4 / .0423 2.37 / .0407 2.42 / .0411

mum detection cost function (minDCF) defined as,

CDet = CMiss × PMiss|Target × PTarget

+CFalseAlarm × PFalseAlarm|NonTarget × (1− PTarget)

to evaluate our system. Based on the SRE2010 task CMiss =
CFalseAlarm = 1 and PTarget = 1/1000.

Table 2 summarizes the performance of i-Vector/PLDA
speaker recognition comparing SVDA against LDA. To cal-
culate the between and within class covariance matrices using
SVDA three strategies have been considered: traditional one-
versus-one, weighted one-versus-one and one-versus-rest. In
one-versus-one strategy, the SVM will be applied to just two
classes, therefore we need to model C(C − 1)/2 SVMs; in
contrast to the one-versus-rest approach that each class will
be classified against all data from all other speakers (need
to train C SVM classifiers). As stated before, C represents
the number of speaker classes. It is worth mentioning that
the one-versus-one strategy is more appropriate for imbalance
problem. The weighted one-versus-one has been designed to
punish the classes that does not have enough samples to de-
fine their structure (or may have noisy or random samples).
In other words, some of the classes do not have well-defined
structure and when we apply SVM, all the samples in the class
will be recognized as the support vectors. Therefore, by giv-
ing these types of classes smaller weight for their contribu-
tion in just calculating V b in Eq. 7, the SVM classifier will
be forced to emphasize more on well-defined classes.

The results prove that SVDA consistently improves LDA
in terms of both EER and minDCF. For SVDA, weighted
one-versus-one strategy is approximately working better than
the traditional one (and both are better than one-versus-rest);
these results meet our expectation that: first, the imbalance
problem present in data (some classes have less than 10
samples and some around 94) will be partly solved with
SVDA. More specifically, EER and minDCF is considerably
improved by 32% and 5.6% (respectively) with traditional
one-versus-one strategy. In addition, with weighted one-
versus-one approach and punishing those classes that are not
well-distinguishable with SVM (and probably contain noisy
and error-full data), the relative improvement attained is 25%
and 9% for EER and minDCF, respectively. Second, the

Table 3. Speaker recognition results comparing LDA and
SVDA in terms of EER/minDCF without dimension reduction.
Enrollment/Test LDA SVDA

traditional weighted
1-vs-1 1-vs-1

Core/Core 1.58 / .039 1.45 / .038 1.46 / .04
Coreext/Coreext 1.46 / .0302 1.37 / .0301 1.36 / .0302

capability of SVM for small sample size problem has been
confirmed (i-Vectors are 600 dimensional but there is not any
class with more than 100 samples in training set).

Table 3 reports results comparing LDA and SVDA with-
out dimension reduction for core and extended core condi-
tions. In terms of EER, SVDA outperforms LDA signifi-
cantly; however, in terms of minDCF there is just marginal
improvement. In summary, with regard to the number of
hyper-parameters, computation time, and the performance
(approximate 32% relative improvement in EER) SVDA
works really well.

6. CONCLUSION AND FUTURE WORK

In this paper, the effectiveness of SVDA in the i-Vector/PLDA
speaker recognition has been studied. The EER and minDCF
scores achieved from the experiments carried out on NIST
SRE2010 task prove that SVDA consistently works better
than LDA. In contrast to LDA that limits the discriminatory
information to the centroid of classes, SVDA captures the
boundary structure of them. In addition, small sample size
problem is well treated with SVDA.

Although SVDA has a considerable improvement for
longer duration test segments, the decrease in EERs and
minDCF is less for short duration test segments. In continue,
we would like to introduce the uncertainty of i-Vectors into
the SVDA to surpass the impact of short duration test data. In
addition, the application of kernel SVM instead of traditional
linear SVM in SVDA will be studied later. Moreover, we
will compare SVDA and LDA for other conditions of NIST
SRE2010 for male, female and pooled speakers.
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