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MIMO and massive MIMO systems at mmWave
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MIMO @ mmWave

Large antenna arrays needed 
at Tx and Rx

Low-overhead channel estimation 
techniques needed

MIMO channel estimation at mmWave is complicated due to hardware constraints

Leverage beamforming gain to 
realize large data rates

Crucial for efficient precoder/combiner 
design in both mmWave MIMO and 
mmWave massive MIMO systems

Massive MIMO and mmWave

mmWave and massive MIMO are key ingredients of 5G

Large matrix sizes also 
complicate channel estimation



MIMO architectures at mmWave: analog beamforming
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Phase shifters

RFainDAC BasebandBaseband
RF
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RFainADC

beamformer combiner

Limited to single stream and single user MIMO

Phase shifters apply for 
the entire band

Beam training used to get the best 
Tx and Rx beamforming directions

* J. Wang et al, "Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems," in IEEE JSAC, October 2009. 

** S. Hur, T. Kim, D. Love, J. Krogmeier, T. Thomas, and A. Ghosh, “Millimeter wave beamforming for wireless backhaul and access in small cell networks,” IEEE 
Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, 2013.



MIMO architectures at mmWave: hybrid precoding
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Combine analog and digital precoding

Fully digital MIMO is not 
feasible at mmWave 

Hybrid precoding can support multi-stream and multi-user MIMO at mmWave

# of DACs/ADCs << # of antennas

Rules out several digital channel 
estimation techniques

*Low resolution mixed circuit 
components not considered here

R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, ``An overview of signal processing techniques for millimeter wave MIMO systems,'' 
JSAC, April 2016.



MmWave channel estimation with hybrid architecture
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Channel estimates are an alternative to beam training, work with multi-stream

Large bandwidth à frequency 
selective channel

Low link SNR without 
beamforming
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Multistream beam training à
large training overhead

No direct access to antenna outputs



Prior work
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…

Hierarchical beam training

Sparsity-based channel estimation
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RF 
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Used for 
analog

architectures

Single stream support only

Works for wideband channel

Most prior work on 
narrowband channel model

Support for multi stream

Avoids explicit channel estimation

Wideband 
systems assumed 

ideal setting

Works for any architecture



Contributions
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Wideband mmWave channel 
estimation technique

Useful in single-carrier 
mmWave systems

Sparse problem formulation 
in time domain

Include system constraints
Frame structure
Finite bandwidth of 
pulse shaper
Hybrid architecture

Works for both MIMO and massive MIMO wideband mmWave systems
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Wideband mmWave channel model

Obtain                            for channel estimation
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Path delay
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Exploit sparsity in the angular and delay domain in the problem formulation

# of tap channel

Clustered in space

AoA angle
spread

RF 
Chain

RF 
Chain

N
t

N
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RF precoder

RF 
Chain

RF 
Chain

N
RF

RF combiner

N
r

Fig. 1. Figure illustrating the transmitter and receiver struc-
ture assumed in the paper. The RF precoder and the combiner
are implemented using a network of phase shifters.

N
t

antennas and a receiver with N
r

antennas. Both the trans-
mitter and the receiver are assumed to have N

RF

RF chains
as shown in Fig. 1. In the time domain, the transmitter uses
a hybrid precoder [15, 17] F = F

RF

F
BB

2 CNt⇥Ns , N
s

be-
ing the number of data streams that can be transmitted. Since
we focus on time-domain channel estimation in this paper,
note that we dropped the subcarrier index usually used with
frequency selective hybrid precoders and combiners, and as-
sume frequency flat beamforming for simplicity. Denoting
the symbol vector at instance n as s[n] 2 CNs⇥1, satisfying
E[s[n]s⇤[n]] = 1

Ns
I, the signal transmitted at discrete-time n

is s̃[n] = Fs[n].
The N
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⇥N
t

channel matrix between the transmitter and
the receiver is assumed to be frequency selective, having a de-
lay tap length N

c
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d
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c

�
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A similar expression for the received signal at every user can
be obtained if a mmWave massive MIMO system is consid-
ered and pilot contamination is neglected.

There are several RF precoder and combiner architectures
that can be implemented [13]. In this paper, we assume a fully
connected phase shifting network. We assume a hardware
constraint that only the quantized angles in the set
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3. CHANNEL ESTIMATION VIA COMPRESSED
SENSING

In this section, we present our channel estimation algorithm
that leverages the sparse channel structure at mmWave.

3.1. Frequency Selective Channel Model

Consider a geometric channel model [12, 18] for the fre-
quency selective mmWave channel consisting of L scattering
clusters. The dth delay tap of the channel can be expressed as
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The vector form of the channel in (6) is useful for the sparse
formulation that is presented next. Note that the `th column
of Ā

T

�A
R

is of the form ā
T

(✓
`

)⌦ a
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(�
`

).

3.2. Sparse Formulation

We assume block transmission with zero padding (ZP) ap-
pended to each transmitted frame. To formulate the sparse
recovery problem, we assume single RF chains are used both
the transmitter and the receiver for the ease of exposition.
The formulation extends directly for multiple RF chains at the
transmitter and the receiver. We assume that for the training
stage the digital precoder and combiner are identity matrices.
Accordingly, for the mth training frame the transmitter uses
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Hybrid precoding for 
training-frame transmission

Key idea of the proposed channel training

9

Frames

Estimate AoA/AoD and ToA
using sparse recovery

Leverage the sparse structure in the mmWave channel & the hybrid architecture

Uniform random 
phase from

quantized angles

Fixed RF
precoder/combiner
for the whole frame



Channel training stages
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Antenna equations

Let G(�, ✓) denote the antenna gain in the elevation angle ✓ and azimuth �. Forp
N⇥

p
N square uniform planar antenna array, assuming the peak gain of N is

uniformly constant within the azimuth and elevation half-power beam-widths,
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The use of block transmission with N
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� 1 zero padding is
important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
during this reconfiguration and inter frame interference. Also
note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
it is impractical to use different precoders and combiners for
different symbols. Vectorizing (9) gives
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To formulate the compressed sensing problem we first exploit
the sparse nature of the channel in the angular domain. As-
suming the AoAs and AoDs are drawn from an angle grid on
G

r

and G
t

, respectively and neglecting the grid quantization
error, we can then express (10) as
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channel gains.
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mmWave channel estimation problem in (14), compressed
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Ā

tx

⌦A
rx

�
⌦ pT

0�
Ā
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corresponding to the estimated AoA and AoD.
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r

, G
t

and G
c

to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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N
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RF 
Chain

RF 
Chain

N
RF
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Fig. 1. Figure illustrating the transmitter and receiver struc-
ture assumed in the paper. The RF precoder and the combiner
are implemented using a network of phase shifters.

N
t

antennas and a receiver with N
r

antennas. Both the trans-
mitter and the receiver are assumed to have N

RF

RF chains
as shown in Fig. 1. In the time domain, the transmitter uses
a hybrid precoder [15, 17] F = F

RF

F
BB

2 CNt⇥Ns , N
s

be-
ing the number of data streams that can be transmitted. Since
we focus on time-domain channel estimation in this paper,
note that we dropped the subcarrier index usually used with
frequency selective hybrid precoders and combiners, and as-
sume frequency flat beamforming for simplicity. Denoting
the symbol vector at instance n as s[n] 2 CNs⇥1, satisfying
E[s[n]s⇤[n]] = 1

Ns
I, the signal transmitted at discrete-time n

is s̃[n] = Fs[n].
The N

r

⇥N
t

channel matrix between the transmitter and
the receiver is assumed to be frequency selective, having a de-
lay tap length N

c

and is denoted as H
d

, d = 0, 1, ..., N
c

�
1. With ⇢ denoting the average received power and v[n] ⇠
N

�
0,�2I

�
denoting the circularly symmetric complex Gaus-

sian distributed additive noise vector, the received signal is

r[n] =
p
⇢
Nc�1X

d=0

H
d

Fs[n� d] + v[n]. (1)

In the time-domain, the receiver applies a hybrid combiner
W = W

RF

W
BB

2 CNr⇥NRF so that the post combining
signal at the receiver is

y[n] =
p
⇢
Nc�1X

d=0

W⇤H
d

Fs[n� d] +W⇤v[n]. (2)

A similar expression for the received signal at every user can
be obtained if a mmWave massive MIMO system is consid-
ered and pilot contamination is neglected.

There are several RF precoder and combiner architectures
that can be implemented [13]. In this paper, we assume a fully
connected phase shifting network. We assume a hardware
constraint that only the quantized angles in the set

A =

(
0,

2⇡

2NQ
, · · · ,

�
2NQ � 1

�
2⇡

2NQ

)
(3)

can be realized in the phase shifters. Here, N
Q

is the number
of angle quantization bits. This implies [F]

i,j

= 1p
Nt

ej'i,j

and [W]
i,j

= 1p
Nr

ej!i,j , with '
i,j

, !
i,j

2 A.

3. CHANNEL ESTIMATION VIA COMPRESSED
SENSING

In this section, we present our channel estimation algorithm
that leverages the sparse channel structure at mmWave.

3.1. Frequency Selective Channel Model

Consider a geometric channel model [12, 18] for the fre-
quency selective mmWave channel consisting of L scattering
clusters. The dth delay tap of the channel can be expressed as

H
d

=
LX

`=1

↵
`

p
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(dT
s

� ⌧
`

)a
R

(�
`

)a⇤
T

(✓
`

), (4)

where p
rc

(⌧) denotes the raised cosine pulse signal evaluated
at ⌧ , ↵

`

2 C is the complex gain of the `th cluster, ⌧
`

2 R is
the delay of the `th cluster, �

`

and ✓
`

are the angles of arrival
and departure (AoA/AoD), respectively of the `th cluster, and
a
R

(�
`

) 2 CNr⇥1 and a
T

(✓
`

) 2 CNt⇥1 denote the antenna
array response vectors of the receiver and transmitter, respec-
tively.

The channel model in (4) can be written compactly as

H
d

= A
R

�
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A⇤
T

, (5)

where �
d

2 CL⇥L is diagonal with non-zero complex en-
tries, and A

R

2 CNr⇥L and A
T

2 CNt⇥L contain the
columns a

R

(�
`

) and a
T

(✓
`

), respectively. Under this nota-
tion, vectorizing the channel matrix in (5) gives
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The vector form of the channel in (6) is useful for the sparse
formulation that is presented next. Note that the `th column
of Ā

T

�A
R

is of the form ā
T

(✓
`

)⌦ a
R

(�
`

).

3.2. Sparse Formulation

We assume block transmission with zero padding (ZP) ap-
pended to each transmitted frame. To formulate the sparse
recovery problem, we assume single RF chains are used both
the transmitter and the receiver for the ease of exposition.
The formulation extends directly for multiple RF chains at the
transmitter and the receiver. We assume that for the training
stage the digital precoder and combiner are identity matrices.
Accordingly, for the mth training frame the transmitter uses
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Fig. 7. Average NMSE versus the number of antenna elements (assuming Nr = Nt) using the proposed frequency-domain

channel estimation approach. The number of angles in the quantized grid used for generating the dictionary is denoted as Gr

(for AoA) and Gt (for AoD). The figure shows plots for different number of bits NQ used for angle quantization in the phase

shifters during the training phase.

SNR levels. Intuitively, thanks to our flexible and generic sparsifying dictionary construction,

choosing larger values for G
r

(G
t

) in comparison with N
r

(N
t

) can further narrow the error

gap between the two cases, so does increasing G
c

in comparison to N
c

as the dictionary will

become more and more robust. This capability of our dictionary design is shown in N
r

N
t

⇥ L

In Fig. 7, we study the performance of the proposed frequency-domain channel estimation

approach. We assume the number of compressive estimation training steps M = 60, the frame

length N = 16, N
RF

= 2 RF chains at the transceivers, and the number of delay taps N
c

= 4.

The number of paths N
p

is assumed to be 2. The size of the FFT block used is K = N = 16.

Fig. 7 shows the NMSE as a function of the number of antenna elements at the transceivers, with

N
r

= N
t

for different values of the dictionary parameters and number quantization bits used

for generating the random phases in the precoders and combiners. While NMSE increases with

12

Using the form in (6) and denoting �
`,d

= ↵
`

p(dT
s

� ⌧
`

), (13) can be expressed as
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. (14)

In (14), the matrices A
T

and A
R

and the complex gains {↵
i

} and delays {⌧
i

} contained within

�
`,d

are all unknowns that need to be estimated to get the explicit multi tap MIMO channel.

Accordingly, we first recover the AoAs / AoDs by estimating the columns of Ā
T

�A
R

via sparse

recovery.

To formulate the compressed sensing problem in the time domain, we first exploit the sparse

nature of the channel in the angular domain. Accordingly, we define the matrices A
tx

and A
rx

used for sparse recovery, that can be computed apriori at the receiver. The N
t

⇥G
t

matrix A
tx

consists of columns a
T

(✓̃
x

), with ✓̃
x

drawn from a quantized angle grid of size G
t

, and the

N
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⇥G
r

matrix A
rx

consists of columns a
R

(�̃
x

), with �̃
x

drawn from a quantized angle grid of

size G
r

. Neglecting the grid quantization error, we can then express (13) as
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Note that the actual frequency selective mmWave channel as seen at the baseband has angles of

arrival and departure drawn from [0, 2⇡). The quantization used for constructing the dictionary,

when fine enough, can ensure that the dominant AoAs and AoDs are captured as columns of
�
Ā

tx

⌦A
rx

�
x. The error incurred due to the angle grid quantization is investigated in Section VI,

where we assume offgrid values for the AoA/AoD in the simulations. With this, the signal x̂
td

consisting of the time domain channel gains and pulse shaping filter response is more sparse

than the unknown vector in (14), and is of size N
c

G
r

G
t

⇥ 1.

Next, the band-limited nature of the sampled pulse shaping filter is used to operate with an

unknown channel vector with a lower sparsity level. For that, we look at the sampled version

of the pulse-shaping filter p
d

having entries p
d

(n) = p
rc

⇣
(d� nNc

Gc
)T

s

⌘
, for d = 1, 2, · · · , N

c
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has entries          

Pulse shaping function

Sampled version

training phase, so that the post combining signal is
2

66664

y(m)

1

y(m)

2

...
y(m)

N

3

77775

T

=
p
⇢w⇤

m

⇥
H

0

· · · H
Nc�1

⇤
S(m)T⌦ f

m

+ e(m)T , (9)

where S(m) =

2

66664

s(m)

1

0 · · · 0

s(m)

2

s(m)

1

· · · .
...

...
. . .

...
s(m)

N

· · · · · · s(m)

N�Nc+1

3

77775
. (10)

The use of block transmission with N
c

� 1 zero padding is
important here, since it would allow for reconfiguring the RF
circuits from one frame to the other and avoids loss of training
data during this reconfiguration. This would also avoid inter
frame interference. Also note that for symboling rate of more
than 1 Gbps (the chip rate used in IEEE 802.11ad preamble,
for example, is 1760 MHZ), it is impractical to use different
precoders and combiners for different symbols. It is more
feasible, however, to change the RF circuitry for different
frames with N ⇠ 64� 512 denoting the frame length in (10).
Vectorizing (9) gives
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To formulate the compressive sensing problem we first exploit
the sparse nature of the channel in the angular domain.
Accordingly, we assume that the AoAs and AoDs are drawn
from an angle grid on G

r

and G
t

, respectively. Neglecting the
grid quantization error, we can then express (11) as
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where A
tx

and A
rx

are the dictionary matrices used for sparse
recovery. The N
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t

matrix A
tx

consists of columns a
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(✓̃
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drawn from a quantized angle grid of size G
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, and
the N
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matrix A
rx

consists of columns a
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), with �̃
x

drawn from a quantized angle grid of size G
r

. The signal x̂
consists of the channel gains and pulse shaping filter response,
and is of size N
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G
r

G
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⇥ 1.
Next the band-limited nature of the sampled pulse shaping

filter is used to make the measurement vector more sparse.
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Next, we look at the sampled version of the pulse-shaping
filter p̃

n

having entries p̃
n

(k), for n = 1, 2, · · · , N
c

and
k = 1, 2, · · · , G

c

. Then, neglecting the quantization error
due to sampling in the delay domain, we can write (12) as
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and x is G
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⇥ 1 sparse vector containing the complex
channel gains.
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Stacking M such measurements obtained from sending M
training frames and using different RF precoder and combiner
for each frame, we have
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⇢� x+ e, (16)
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is the measurement matrix, and
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Ā

tx

⌦A
rx

�
⌦ p̃T

Nc

3

7775
2 CNcNrNt⇥GcGrGt (20)

is the dictionary. The beamforming and combining vectors
f
m

, w
m

, m = 1, 2, · · · , M used for training have the
phase angles chosen uniformly at random from the set A in
(3).

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (16), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G

r

, G
t

and G
c

to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to
estimate the AoA and AoD. Following this, the channel gains
can be estimated to minimize the minimum mean squared
error or via least squares by plugging in the columns of the
dictionary matrices corresponding to the estimated AoA and
AoD.

Unknown x is GtGrGc X 1, L-sparse vector containing the complex channel gains

an RF precoder f (m)

RF

that can be realized using quantized an-
gles at the analog phase shifters. The nth symbol of the mth
received frame is
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training phase, so that the post combining signal is
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The use of block transmission with N
c

� 1 zero padding is
important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
during this reconfiguration and inter frame interference. Also
note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
it is impractical to use different precoders and combiners for
different symbols. Vectorizing (9) gives
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To formulate the compressed sensing problem we first exploit
the sparse nature of the channel in the angular domain. As-
suming the AoAs and AoDs are drawn from an angle grid on
G

r

and G
t

, respectively and neglecting the grid quantization
error, we can then express (19) as
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where A
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and A
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are the dictionary matrices used for
sparse recovery. The N
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signal x̂ consists of the channel gains and pulse shaping filter
response, and is of size N
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Next, the band-limited nature of the sampled pulse shap-

ing filter is used to effectively operate with an unknown chan-
nel vector of lower sparsity level. Accordingly, we define the
sampled version of the pulse-shaping filter p
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and x is G
c
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G
t

⇥ 1 sparse vector containing the complex
channel gains.

Stacking M such measurements obtained from sending
M training frames using different RF precoder and combiner
for each frame, we have
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is the measurement matrix, and
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is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
pendent of M .

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G

r

, G
t

and G
c

to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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The use of block transmission with N
c

� 1 zero padding is
important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
during this reconfiguration and inter frame interference. Also
note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
it is impractical to use different precoders and combiners for
different symbols. Vectorizing (9) gives
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To formulate the compressed sensing problem we first exploit
the sparse nature of the channel in the angular domain. As-
suming the AoAs and AoDs are drawn from an angle grid on
G

r

and G
t

, respectively and neglecting the grid quantization
error, we can then express (19) as
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is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
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AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G
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and G
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to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
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note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
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is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
pendent of M .

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G
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and G
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to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
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note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
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is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
pendent of M .

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G
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and G
c

to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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The use of block transmission with N
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� 1 zero padding is
important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
during this reconfiguration and inter frame interference. Also
note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
it is impractical to use different precoders and combiners for
different symbols. Vectorizing (9) gives
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To formulate the compressed sensing problem we first exploit
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is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
pendent of M .

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G
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and G
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to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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The use of block transmission with N
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� 1 zero padding is
important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
during this reconfiguration and inter frame interference. Also
note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
it is impractical to use different precoders and combiners for
different symbols. Vectorizing (9) gives
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To formulate the compressed sensing problem we first exploit
the sparse nature of the channel in the angular domain. As-
suming the AoAs and AoDs are drawn from an angle grid on
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nel vector of lower sparsity level. Accordingly, we define the
sampled version of the pulse-shaping filter p

d

having entries
p
d

(n) = p
rc

⇣
(d� nNc

Gc
)T

s

⌘
, for d = 0, 1, · · · , N

c

� 1 and
n = 1, 2, · · · , G

c

. Neglecting the quantization error due to
sampling in the delay domain, we can then write (11) as

y
m

= �
m

�
I
Nc ⌦ Ā

tx

⌦A
rx

�
�x+ e

m

, (12)

where � =

2

6664

I
GrGt ⌦ pT

0

I
GrGt ⌦ pT

1

...
I
GrGt ⌦ pT

Nc�1

3

7775
, (13)

and x is G
c

G
r

G
t

⇥ 1 sparse vector containing the complex
channel gains.

Stacking M such measurements obtained from sending
M training frames using different RF precoder and combiner
for each frame, we have

y = � x+ e, (14)

where y =
⇥
yT

1

,yT

2

, ...,yT

M

⇤
T 2 CNM⇥1 is the measured

signal,

� =

2

666664

S
1

⌦ f
(1)

RF

T

⌦w
(1)

RF

⇤

S
2

⌦ f
(2)

RF

T

⌦w
(2)

RF

⇤

...

S
M

⌦ f
(M)

RF

T

⌦w
(M)

RF

⇤

3

777775
2 CNM⇥NcNrNt (15)

is the measurement matrix, and

 =
�
I
Nc ⌦ Ā

tx

⌦A
rx

�
� (16)

=

2

6664

�
Ā

tx

⌦A
rx

�
⌦ pT

0�
Ā

tx

⌦A
rx

�
⌦ pT

1

...�
Ā

tx

⌦A
rx

�
⌦ pT

Nc�1

3

7775
2 CNcNrNt⇥GcGrGt (17)

is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
pendent of M .

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G

r

, G
t

and G
c

to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.

Delay 

domain 

dictionary

Delay grid sizes

Exploiting group sparsity due to pulse shaping

Evaluated on the delay grid
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Dictionary with columns 

...

Random beamforming matrices

p
⇢(S(1) ⌦ fT

1

⌦w⇤
1

)(I
Nc ⌦Ac

tx

⌦A
rx

)x+ v(1)

p
⇢(S(M) ⌦ fT

M

⌦w⇤
M

)(I
Nc ⌦Ac

tx

⌦A
rx

)x+ v(M)

{�
`

, ✓
`

, ↵
`

, ⌧
`

}

H
d

2 Nr⇥Nt

d = 0, 1, ... N
c

� 1

ac
T

(

˜�
x

)⌦ a
R

(

˜✓
y

)

2

Measurement 1

Measurement M
Quantized grid of AoA/AoD

...

Dictionary matrix constructed 
using antenna array response

Angle grid & delay quantization can be 
made as fine as required for sparsity

Extends directly to multiple RF chains during training 

training phase, so that the post combining signal is
2

66664

y(m)

1

y(m)

2

...
y(m)

N

3

77775

T

=
p
⇢w⇤

m

⇥
H

0

· · · H
Nc�1

⇤
S(m)T⌦ f

m

+ e(m)T , (9)

where S(m) =

2

66664

s(m)

1

0 · · · 0

s(m)

2

s(m)

1

· · · .
...

...
. . .

...
s(m)

N

· · · · · · s(m)

N�Nc+1

3

77775
. (10)

The use of block transmission with N
c

� 1 zero padding is
important here, since it would allow for reconfiguring the RF
circuits from one frame to the other and avoids loss of training
data during this reconfiguration. This would also avoid inter
frame interference. Also note that for symboling rate of more
than 1 Gbps (the chip rate used in IEEE 802.11ad preamble,
for example, is 1760 MHZ), it is impractical to use different
precoders and combiners for different symbols. It is more
feasible, however, to change the RF circuitry for different
frames with N ⇠ 64� 512 denoting the frame length in (10).
Vectorizing (9) gives

y(m) =
p
⇢S(m) ⌦ fT

m

⌦w⇤
m

2

6664

vec(H
0

)
vec(H

1

)
...

vec(H
Nc�1

)

3

7775
+ e(m). (11)

To formulate the compressive sensing problem we first exploit
the sparse nature of the channel in the angular domain.
Accordingly, we assume that the AoAs and AoDs are drawn
from an angle grid on G

r

and G
t

, respectively. Neglecting the
grid quantization error, we can then express (11) as

y(m)=
p
⇢
⇣
S(m)⌦fT

m

⌦w⇤
m

⌘�
I
Nc⌦Ā

tx

⌦A
rx

�
x̂+ e(m), (12)

where A
tx

and A
rx

are the dictionary matrices used for sparse
recovery. The N

t

⇥G
t

matrix A
tx

consists of columns a
T

(✓̃
x

),
with ✓̃

x

drawn from a quantized angle grid of size G
t

, and
the N

r

⇥G
r

matrix A
rx

consists of columns a
R

(�̃
x

), with �̃
x

drawn from a quantized angle grid of size G
r

. The signal x̂
consists of the channel gains and pulse shaping filter response,
and is of size N

c

G
r

G
t

⇥ 1.
Next the band-limited nature of the sampled pulse shaping

filter is used to make the measurement vector more sparse.
Define

p
n

(⌧) = p
rc

(n� ⌧) (13)
and �

ps

(n) = diag ([p
n

(⌧
1

) p
n

(⌧
2

) · · · p
n

(⌧
L

)]) . (14)

Using (13) and (14), (6) can be written as

vec(H
d

) =

r
N

t

N
t

L

�
Ā

T

�A
R

�
�

ps

(dT
s

)

2

6664

↵
1

↵
2

...
↵
L

3

7775
. (15)

Next, we look at the sampled version of the pulse-shaping
filter p̃

n

having entries p̃
n

(k), for n = 1, 2, · · · , N
c

and
k = 1, 2, · · · , G

c

. Then, neglecting the quantization error
due to sampling in the delay domain, we can write (12) as

y(m)=
p
⇢
⇣
S(m)⌦fT

m

⌦w⇤
m

⌘�
I
Nc⌦Ā

tx

⌦A
rx

�
�x+ e(m),

where � =

2

6664

I
GrGt ⌦ p̃T

1

I
GrGt ⌦ p̃T

2

...
I
GrGt ⌦ p̃T

Nc

3

7775
,

and x is G
c

G
r

G
t

⇥ 1 sparse vector containing the complex
channel gains.

Stacking M such measurements obtained from sending M
training frames and using different RF precoder and combiner
for each frame, we have

y =
p
⇢� x+ e, (16)

where y =

2

6664

y(1)

y(2)

...
y(M)

3

7775
2 CNM⇥1 (17)

is the measured signal,

� =

2

6664

S(1)⌦fT
1

⌦w⇤
1

S(2)⌦fT
2

⌦w⇤
2

...
S(M)⌦fT

M

⌦w⇤
M

3

7775
2 CNM⇥NcNrNt (18)

is the measurement matrix, and

 =
�
I
Nc ⌦ Ā

tx

⌦A
rx

�
� (19)

=

2

6664

�
Ā

tx

⌦A
rx

�
⌦ p̃T

1�
Ā

tx

⌦A
rx

�
⌦ p̃T

2

...�
Ā

tx

⌦A
rx

�
⌦ p̃T

Nc

3

7775
2 CNcNrNt⇥GcGrGt (20)

is the dictionary. The beamforming and combining vectors
f
m

, w
m

, m = 1, 2, · · · , M used for training have the
phase angles chosen uniformly at random from the set A in
(3).

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (16), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease G

r

, G
t

and G
c

to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to
estimate the AoA and AoD. Following this, the channel gains
can be estimated to minimize the minimum mean squared
error or via least squares by plugging in the columns of the
dictionary matrices corresponding to the estimated AoA and
AoD.

Measurement matrix

Effective dictionary matrix

Stack M measurements

Stack M measurements

y
1

=
p
⇢

✓
S
1

⌦ f
(1)

RF

T

⌦w
(1)

RF

⇤
◆�

I
Nc ⌦ Ā

tx

⌦A
rx

�
�x+ e

1

y
M

=
p
⇢

✓
S
M

⌦ f
(M)

RF

T

⌦w
(M)

RF

⇤
◆�

I
Nc ⌦ Ā

tx

⌦A
rx

�
�x+ e

M

Contains quantized grid of ToA
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Setup
• Tx has 32 antennas, Rx has 32 antennas
• Dictionary generated using AoD/AoA with grid 

size = 64
• Frequency selective channel with 4 delay taps 

and 2 paths
• Pulse shaping filter with 0.8 roll-off factor
• Frame length = 16
• 2 bit quantization for precoder and combiner 

phase shifters
• Orthogonal Matching pursuit followed by least 

square estimation

NMSE =

PNc
d=0 ||Hd� ˆHd||2FPNc

d=0 ||Hd||2F

3

80-100 training frames are enough to ensure low channel estimation error

With 1 RF chain
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0
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NM
SE

 (d
B)

M = 80
M = 100

AoA and
AoD drawn from quantized

angle grid

Arbitrary AoA
and AoD

Fig. 2. Normalized mean squared error (NMSE) as a function
of SNR for different training length M when N

RF

= 1. Using
the proposed approach, training length of 80�100 is sufficient
to ensure very low estimation error

4. SIMULATION RESULTS

In this section, the performance of the proposed channel es-
timation algorithm is provided for the single-user scenario.
We consider a system with N

t

= 32 transmitter antennas
and N

r

= 32 receiver antennas for illustration. Uniform
linear arrays with half wavelength separation are assumed.
The AoA and AoD quantization used for construction of the
transmitter and receiver dictionary matrices are taken to be
G

r

= 64 and G
t

= 64. The angle quantization used in
the phase shifters is assumed to have N

Q

= 2 quantization
bits so that the entries of the RF precoders and combiners are
drawn from {1, � 1, j, � j} with equal probability. The
frame length is assumed to be N = 16 and the tap length
of the frequency selective channel is assumed to be uniform
N

c

= 4 for illustration. The scattering cluster centers are
assumed to be independently and uniformly distributed with
delay ⌧

`

2 [0, (N
c

� 1)T
s

], and angles �
`

and ✓
`

from (0,⇡).
The raised cosine pulse shaping signal is assumed to have a
roll-off factor of 0.8.

Fig. 2 shows the normalized mean squared error (NMSE)
of the channel estimates as a function of the post combining
received signal SNR. Here we define NMSE as

NMSE =

P
Nc

d=0

||H
d

� Ĥ
d

||2
FP

Nc

d=0

||H
d

||2
F

(18)

for comparing the effectiveness of our proposed channel esti-
mation algorithm. From Fig. 2, it can be seen that with train-
ing length of even 80 � 100 frames, sufficiently low channel
estimation error can be ensured. Increasing the training length
M leads to smaller NMSE, while the size of the dictionary in
this setup is a constant 4096⇥ 32768, independent of M . For

10 20 30 40 50 60 70 80 90 100
Number of training frames (M)

5.5

5.6

5.7

5.8

5.9

6

6.1

Ac
hie

va
ble

 ra
te 

(bp
s/H

z)

Perfect channel estimates
Two RF chains - CS based channel estimates
One RF chain - CS based channel estimates

Fig. 3. Achievable spectral efficiency for SNR = 0 dB and
N

s

= 1, as a function of the number of training steps M for
different numbers of RF chains N

RF

used at the transceivers.

comparing the impact of angle quantization error, we show
the NMSE for the case when the AoAs/AoDs are drawn from
quantized grids and also the case when the AoAs/AoDs are
unrestricted. Choosing larger values for G

r

(G
t

) in compar-
ison with N

r

(N
t

) can further narrow the error gap between
the two cases. More elaborate plots showing the performance
gains with different dictionary sizes and complexity are pro-
vided in the extended version of this paper [19].

Fig. 3 shows the achievable rates using the channel esti-
mates, for different number of RF chains at the transceivers.
In Fig. 3, we compute rates as in [18], without water fill-
ing. The improvement in rate performance, even with smaller
training steps occurs thanks to a larger number of effective
measurements per training sent, that scales with the number
of RF combiners N

RF

at the receiver. Similarly, employing
multiple RF chains at the transmitter contributes to a larger
set of random precoders, resulting in smaller estimation error
via compressed sensing. So, a larger N

RF

is preferred to de-
crease the training overhead and to fully leverage the hybrid
architecture in wideband mmWave systems.

5. CONCLUSION

In this paper, we proposed a time-domain channel estimation
algorithm for frequency selective mmWave systems using hy-
brid architecture at the transmitter and receiver. The proposed
channel training protocol can be used to support single-carrier
MIMO operation in systems like IEEE 802.11ad, since the en-
tire channel is estimated after the beam training phase. Sim-
ulation results showed that the proposed algorithm required
very few training frames to ensure low estimation error, and
further reduction can be obtained by using multiple RF chains
at the transmitter and the receiver.
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Increased number of 
measurements per training 

frame

Using multiple RF chains reduces training overhead

Leverage multiple RF 
chains

Assuming fully-digital MIMO 
rates w/o water-filling

Hybrid precoding can give rates 
close to fully-digital MIMO
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Wideband mmWave channel estimation needs to consider hardware constraints
ª Fewer number of baseband measurements
ª Effective baseband channel is less sparse

Proposed time domain channel estimation using hybrid architecture
ª Sparse formulation enables use of compressive sensing tools
ª Multiple RF chains at the transceivers reduce the number of training step

Future work
ª Compare complexity with frequency domain channel estimation techniques
ª Comparison of performance between beam training and CS based approaches
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