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MIMO and massive MIMO systems at mmWave

¢ Massive MIMO and mmWave
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mmVVave and massive MIMO are key ingredients of 5G

Large antenna arrays needed Low-overhead channel estimation

at Tx and Rx techniques needed

Crucial for efficient precoder/combiner

reverage beamforming gain to design in both mmWave MIMO and
realize large data rates Large matrix sizes also mmWVave massive MIMO systems

complicate channel estimation

MIMO channel estimation at mmWave is complicated due to hardware constraints
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MIMO architectures at mmWave: analog beamforming

beamformer Y combiner
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—52 ;J @7 ......... Phase shifters
Phase shifte.rs apply for Beam training used to get the best
the entire band Tx and Rx beamforming directions

Limited to single stream and single user MIMO

* ). Wang et al, "Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems," in IEEE JSAC, October 2009.
* S, Hur, T. Kim, D. Love, . Krogmeier, T. Thomas, and A. Ghosh, “Millimeter wave beamforming for wireless backhaul and access in small cell networks,” IEEE
Transactions on Communications, vol. 61, no. 10, pp. 4391—4403, 2013.
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MIMO architectures at mmWave: hybrid precoding

Fully digital MIMO is not
feasible at mmWave

Rules out several digital channel

estimation techniques

Hybrid precoding can support multi-stream and multi-user MIMO at mmWave
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(\@ne analog and digita@/)

# of DACs/ADCs << # of antennas

*Low resolution mixed circuit
components not considered here

R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "*An overview of signal processing techniques for millimeter wave MIMO systems,"

JSAC, April 2016.
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MmWave channel estimation with hybrid architecture
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Multistream beam training =

large training overhead
Low link SNR without

Large bandwidth = frequency beamforming

selective channel No direct access to antenna outputs

Channel estimates are an alternative to beam training, work with multi-stream
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Prior work

-

Single stream support only
Works for wideband channel

\o

Used for
analog
architectures

Hierarchical beam training

Avoids explicit channel estimation Y

~

Support for multi stream

Wideband
systems assumed

: ideal settin
Most prior work on &

narrowband channel model

Sparsity-based channel estimation
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Works for any architecture
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Contributions
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Include system constraints

S e lati Frame structure
Wideband mmW/ave channel parse problem formulation o e of

estimation technique in time domain pulse shaper

N : Hybrid architecture
Useful in single-carrier

mmWVave systems

Works for both MIMO and massive MIMO wideband mmWave systems
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Wideband mmWoave channel model -
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# of tap channel

Obtain {@, 0o, v, Te}for channel estimation

Exploit sparsity in the angular and delay domain in the problem formulation
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Key idea of the proposed channel training
/ -

g’ —

: : Fixed RF
Hybrid precoding for precoder/combiner
training-frame transmission for the whole frame

$

Frames

Uniform random
phase from
quantized angles

Estimate AoA/AoD and ToA
using sparse recovery

Leverage the sparse structure in the mmWave channel & the hybrid architecture
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Channel training stages (zeros used for beam switching)

N.—1 Length N training data

ZP Training sequence ‘ ‘ i D — Discard ZP

precoder f( m)  combiner W

m'™ training frame [0 -+ 0 sm[1] -+ s [N] ]
N.—1
1] i snll] fpsnl2] - fitg sim (V]
Ym[2] s 0 £ sm (1]
| =wie [Ho -+ Hy] . e +elm
| Ym [V]_ 0 0. £{Wsu[N—Ne+1].

Zero-padding facilitates RF circuit reconfiguration across frames

10
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Exploiting sparsity in the angular domain

—————
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Evaluated on the angle grid

Goal: Estimate the non-zeros elements of the sparse vector x
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Exploiting group sparsity due to pulse shaping

Clustered in time:
Cluster arrival date: 1/7;

’LOS 2~ NLOS cluster =
— uil Tytannn.

\
\

Deléy grid sizes

2 4 6 8 12 14
n (sample where the path arrived)

pd(n) :?rc ((d - ’ﬂg—Z)TS)
Ym = ®m (In, ® At ® Arx) Tx + €4,

Pulse shaping function

I IGrGt ® pg
Ig.c, ®pi |
where BN t. N S Sampled version
Défay ) T Pd has entries pd(n) n = 1, 2, cee GC
domain LleNe? ® PN, 1] T o1 N 1
dictionary = UL, oy Ve T

Evaluated on the delay grid

Unknown x is G;G,G, X 1, L-sparse vector containing the complex channel gains
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Compressive channel estimation

itttk ettt » Effective dictionary matrix

Stack M measurements ——=y = /pPW¥x + e

N S - Measurement matrix

Measurement1 Y1 = +/P (Sl @ f]_-g{ll-'z 029 W(l) ) (INC ® Ay ® Arx) I'x + e;
Contains quantized grid of ToA
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Random beamformmg matrices Dictionary with columns ¢ (¢ @ aR’zQ

Dictionary matrix constructed

! Angle grid & delay quantization can be
using antenna array response

made as fine as required for sparsity

Extends directly to multiple RF chains during training




THE UNIVERSITY OF
TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

Simulation results With 1 RF chain
Setug —¥— M = 80
* Tx has 32 antennas, Rx has 32 antennas o ' Mol il
* Dictionary generated using AoD/AoA with grid
size = 64 -3 D Arbitrary AoA 7
* Frequency selective channel with 4 delay taps O and AoD
and 2 paths ol °..
*  Pulse shaping filter with 0.8 roll-off factor i:f/
* Frame length = |6 z .l
* 2 bit quantization for precoder and combiner
phase shifters ol 3
* Orthogonal Matching pursuit followed by least L
square estimation L b o drawn o coaom 224 '0«,,," ol
angle grid ‘
NMSE — Zév:co ||Hd_Hd||% 0 . . . . . T

Efi\f:co |Hd | |%‘ -15 -10 s SNRo(dB) 5 10 15

80-100 training frames are enough to ensure low channel estimation error
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Employing hybrid architecture
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Effectively increases the
precoding and combining
beam patterns

Using multiple RF chains at Tx and Rx gives better channel estimates

15
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Reducing the training overhea
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T ~&~Two RF chains - CS based channel estimates
Hybrid precoding can give rates o [&__L= = Perfect channel estimates
close to fully-digital MIMO 0 20 oo 9 80 100
ye Number of training frames (M)

Using multiple RF chains reduces training overhead
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Conclusion and future work

Wideband mmWave channel estimation needs to consider hardware constraints
4+ Fewer number of baseband measurements

+ Effective baseband channel is less sparse

Proposed time domain channel estimation using hybrid architecture

+ Sparse formulation enables use of compressive sensing tools

+ Multiple RF chains at the transceivers reduce the number of training step

17
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