

Time-domain channel estimation for wideband millimeter wave systems with hybrid architecture

Kiran Venugopal⁺, Ahmed Alkhateeb⁺, Robert W. Heath, Jr.⁺, and Nuria Gonzalez-Prelcic[‡]

⁺ The University of Texas at Austin, TX, USA

⁺ The University of Vigo, Spain

Thanks to the National Science Foundation Grant No. NSF-CCF-1319556, and the Intel/Verizon 5G program.

MIMO and massive MIMO systems at mmWave

MIMO channel estimation at mmWave is complicated due to hardware constraints

complicate channel estimation

MIMO architectures at mmWave: analog beamforming

Limited to single stream and single user MIMO

* J. Wang et al, "Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems," in *IEEE JSAC*, October 2009. ** S. Hur, T. Kim, D. Love, J. Krogmeier, T. Thomas, and A. Ghosh, "Millimeter wave beamforming for wireless backhaul and access in small cell networks," IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, 2013.

MIMO architectures at mmWave: hybrid precoding

Hybrid precoding can support multi-stream and multi-user MIMO at mmWave

R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, ``An overview of signal processing techniques for millimeter wave MIMO systems," JSAC, April 2016.

MmWave channel estimation with hybrid architecture

Channel estimates are an alternative to beam training, work with multi-stream

Contributions

Wideband mmWave channel estimation technique

Sparse problem formulation in time domain

Useful in single-carrier mmWave systems

Include system constraints

- Frame structure
- Finite bandwidth of pulse shaper
- Hybrid architecture

Works for both MIMO and massive MIMO wideband mmWave systems

Exploit sparsity in the angular and delay domain in the problem formulation

Leverage the sparse structure in the mmWave channel & the hybrid architecture

(zeros used for beam switching) **Channel training stages** $N_c - 1$ Length N training data precoder $\mathbf{f}_{\mathrm{RF}}^{(m)}$ combiner $\mathbf{w}_{\mathrm{RF}}^{(m)}$ Discard ZP ZP Training sequence m^{th} training frame $[\underbrace{0 \cdots 0}_{m} s_m[1] \cdots s_m[N]]$ $N_{\rm c}-1$ $\begin{bmatrix} y_m[1] \\ y_m[2] \\ \vdots \\ y_m[N] \end{bmatrix}^T = \mathbf{w}_{\mathrm{RF}}^{(m)*} [\mathbf{H}_0 \cdots \mathbf{H}_{N_{\mathrm{c}}-1}] \begin{bmatrix} \mathbf{f}_{\mathrm{RF}}^{(m)} s_m[1] & \mathbf{f}_{\mathrm{RF}}^{(m)} s_m[2] \cdots \mathbf{f}_{\mathrm{RF}}^{(m)} s_m[N] \\ 0 & \mathbf{f}_{\mathrm{RF}}^{(m)} s_m[1] \cdots \mathbf{f}_{\mathrm{RF}}^{(m)} s_m[N] \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \cdots & \mathbf{f}_{\mathrm{RF}}^{(m)} s_m[N-N_{\mathrm{c}}+1] \end{bmatrix} + \mathbf{e}^{(m)} \mathbf{e$

Zero-padding facilitates RF circuit reconfiguration across frames

Exploiting sparsity in the angular domain

Goal: Estimate the non-zeros elements of the sparse vector **x**

Exploiting group sparsity due to pulse shaping

Unknown **x** is $G_t G_r G_c \times 1$, L-sparse vector containing the complex channel gains

Compressive channel estimationEffective dictionary matrixStack M measurements
$$\mathbf{y} = \sqrt{\rho} \Phi \Psi \mathbf{x} + \mathbf{e}$$
Measurement 1 $\mathbf{y} = \sqrt{\rho} \left(\mathbf{S}_1 \otimes \mathbf{f}_{\mathrm{RF}}^{(1)} \otimes \mathbf{w}_{\mathrm{RF}}^{(1)*} \right) \left(\mathbf{I}_{N_c} \otimes \bar{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}} \right) \mathbf{\Gamma} \mathbf{x} + \mathbf{e}_1$ Contains quantized grid of ToAEffective dictionary matrixMeasurement 1 $\mathbf{y} = \sqrt{\rho} \left(\mathbf{S}_1 \otimes \mathbf{f}_{\mathrm{RF}}^{(1)} \otimes \mathbf{w}_{\mathrm{RF}}^{(1)*} \right) \left(\mathbf{I}_{N_c} \otimes \bar{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}} \right) \mathbf{\Gamma} \mathbf{x} + \mathbf{e}_M$ Quantized grid of AoA/AoDMeasurement M $\mathbf{y}_M = \sqrt{\rho} \left(\mathbf{S}_M \otimes \mathbf{f}_{\mathrm{RF}}^{(M)*} \otimes \mathbf{w}_{\mathrm{RF}}^{(M)*} \right) \left(\mathbf{I}_{N_c} \otimes \bar{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}} \right) \mathbf{\Gamma} \mathbf{x} + \mathbf{e}_M$ Quantized grid of AoA/AoDRandom beamforming matricesDictionary with columns $\mathbf{a}_{\mathrm{T}}^c \left(\tilde{\phi}_x \right) \otimes \mathbf{a}_{\mathrm{R}} \left(\tilde{\theta}_y \right)$ Magle grid & delay quantization can be made as fine as required for sparsity

Extends directly to multiple RF chains during training

Simulation results

<u>Setup</u>

- Tx has 32 antennas, Rx has 32 antennas
- Dictionary generated using AoD/AoA with grid size = 64
- Frequency selective channel with 4 delay taps and 2 paths
- Pulse shaping filter with 0.8 roll-off factor
- Frame length = 16
- 2 bit quantization for precoder and combiner phase shifters
- Orthogonal Matching pursuit followed by least square estimation

NMSE =
$$\frac{\sum_{d=0}^{N_c} ||\mathbf{H}_d - \hat{\mathbf{H}}_d||_{\rm F}^2}{\sum_{d=0}^{N_c} ||\mathbf{H}_d||_{\rm F}^2}$$

80-100 training frames are enough to ensure low channel estimation error

Employing hybrid architecture

Using multiple RF chains at Tx and Rx gives better channel estimates

Reducing the training overhead

Using multiple RF chains reduces training overhead

Conclusion and future work

Wideband mmWave channel estimation needs to consider hardware constraints

- Fewer number of baseband measurements
- + Effective baseband channel is less sparse

Proposed time domain channel estimation using hybrid architecture

- + Sparse formulation enables use of compressive sensing tools
- + Multiple RF chains at the transceivers reduce the number of training step

Future work

- + Compare complexity with frequency domain channel estimation techniques
- + Comparison of performance between beam training and CS based approaches

References

- 1. F. Boccardi et al, ``Five disruptive technology directions for 5G," IEEE Commun. Mag., vol. 52, pp. 74--80, Feb. 2014.
- 2. J.Andrews et al, ``What will 5G be?," IEEE J. Sel. Areas Commun., vol. 32, pp. 1065--1082, June 2014.
- 3. Z. Pi and F. Khan, ``An introduction to millimeter-wave mobile broadband systems," *IEEE Commun. Mag.*, vol. 49, pp. 101--107, June 2011.
- 4. T. Rappaport *et al*, ``Millimeter wave mobile communications for 5G cellular: It will work!," *IEEE Access*, vol. 1, pp. 335--349, May 2013.
- 5. W. Roh *et al*, ``Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," *IEEE Commun. Mag.*, vol. 52, pp. 106--113, Feb. 2014.
- 6. A.Alkhateeb, G. Leus, and R.W. Heath, ``Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?," in *Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Process. (ICASSP)*, pp.2909--2913, April 2015.
- 7. Z. Gao, L. Dai, and Z. Wang, ``Channel estimation for mmwave massive MIMO based access and backhaul in ultra-dense network," in *Proc. IEEE Int. Conf. on Commun. (ICC)*, pp. 1--6, May 2016.
- 8. T. E. Bogale and L. B. Le, ``Massive MIMO and mmwave for 5G wireless hetnet: Potential benefits and challenges," *IEEE Veh. Technol. Mag.*, vol. 11, pp. 64--75, March 2016.
- 9. R.W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, ``An overview of signal processing techniques for millimeter wave MIMO systems," *IEEE J. Sel. Areas Commun.*, vol. 10, pp. 436--453, April 2016.
- 10. J.Wang, ``Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems," IEEE J. Sel. Areas Commun., vol. 27, pp. 1390--1399, Oct. 2009.

References

- 11. S. Hur, T. Kim, D. J. Love, J.V. Krogmeier, T.A. Thomas, and A. Ghosh, ``Millimeter wave beamforming for wireless backhaul and access in small cell networks," IEEE Trans. Commun., vol. 61, pp. 4391--4403, Oct. 2013.
- 12. A.Alkhateeb, O. E.Ayach, G. Leus, and R.W. Heath Jr., ``Channel estimation and hybrid precoding for millimeter wave cellular systems," IEEE J. Sel.Topics Signal Process., vol. 8, pp. 831--846, Oct. 2014.
- 13. R. M. Rial, C. Rusu, A. Alkhateeb, N. G. Prelcic, and R.W. Heath Jr., ``Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?," IEEE Access, Jan. 2016.
- 14. S. Kashyap, C. Mollen, E. Bjornson, and E. G. Larsson, ``Frequency-domain interpolation of the zero-forcing matrix in massive MIMO-OFDM," in IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC), pp. 1--5, July 2016.
- 15. A.Alkhateeb and R.W. Heath Jr., ``Frequency selective hybrid precoding for limited feedback millimeter wave systems" IEEE Trans. Commun., vol. 64, pp. 1801--1818, May 2016.
- 16. A. Ghosh et al, ``Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks," IEEE J. Sel. Areas Commun., vol.~32, pp.~1152--1163, June 2014.
- 17. O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R.W. Heath Jr., ``Spatially sparse precoding in millimeter wave MIMO systems," IEEE Trans. Commun., vol. 13, pp. 1499--1513, Mar. 2014.
- 18. P. Schniter and A. Sayeed, ``Channel estimation and precoder design for millimeter-wave communications: The sparse way," in Proc. Asilomar Conf. Signals, Syst., Comput., pp. 273--277, Nov. 2014.
- 19. K.Venugopal, A.Alkhateeb, N. G. Prelcic, and R.W. Heath Jr., ``Channel estimation for hybrid architecture based wideband millimeter wave systems," CoRR, vol. abs/1611.03046, 2016. http://arxiv.org/abs/1611.03046.