

Layered Broadcast Over Amplify-and-Forward Relay Channels

Mohamed A. Attia[†], Mohammad Shaqfeh^{*}, Karim G. Seddik[†], and Hussein Alnuweiri^{*}

> [†]American University in Cairo, Egypt ^{*}Texas A&M University in Qatar

> > November 27, 2015

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Introduction ●000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Motivat	tion				

- For single layer transmission, all transmitted bits are equally protected.
- Multi-layer transmission combines
 - Successive refinement layered source coding.
 - Ordered protection levels of the source layers.
- Therefore, the **base** source layer is given higher priority than the **enhancement** source layers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Motivat	ion (cont'	d)			

- As a result:
 - For faded channel: Some information is decoded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- For good channel: All information is decoded.
- Consequently, outage probability is decreased.

- We are interested in multilayer transmission using broadcast approach:
 - source layers are protected using different channel codewords.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- All source layers are jointly transmitted using superposition coding.
- Then they are decoded using successive interference cancellation at the receiver.
- Our contribution is on the investigation of multilayer transmission on a relay channel.

Introduction ○○○●○○○	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Previou	s Work				

Our Previous Work in terms of multilayer transmission on a relay channel:

- Optimal power allocation for 2-layer transmission over selection relaying decode-and-forward (SDF).
- Optimal power allocation for M-layer transmission over relaying Amplify-and-forward (AF).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Previous Work - SDF Relays

SDF Relays:

- We have investigated the 2-layer transmission.
- L₁ is the base layer, and L₂ is the enhancement layer.
- L₂ refines the description in L₁.
- We have applied the SDF strategy.
- We solved the power optimization problem over the 2 layers.
- We found that extending the solution for any number of layers becomes prohibitively complex.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

AF Relays:

- We have investigated the Multi-layer transmission for any number of layers *M*.
- L_1 is the base layer, and the upper layers are the enhancement layers.
- Each layer refines the information form all lower layers successively (Successive Refinement SR).
- We have applied the AF strategy.
- An approximation was found for the end-to-end channel condition.
- This approximation allows for applying a previous algorithm for solving the power optimization problem.

Introduction ○○○○○●	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Prelimir	naries				

Utility function:

- It describes the user satisfaction.
- Function of total rate decoded successfully \bar{R} .
- For example:
 - Maximize expected rate $U(\bar{R}) = \bar{R}$
 - Minimize expected distortion $U(\bar{R}) = 1 e^{-2\bar{R}}$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
System	Model				

- We consider a system that consists of three nodes; source, destination and relay.
- We assume that the source is Gaussian and it is encoded into M layers with fixed rates.
- The relay is half-duplex and applies Amplify-and-Forward (AF) strategy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

System Model (cont'd)

- Therefore. the transmission is carried over two consecutive time slots of equal duration and bandwidth.
 - The first time slot: The source broadcasts the layers to the relay and the destination.
 - The second time slot: If the relay forwards the layers after amplifying to the destination.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We denote the SNR over the three links of the relay channel using $\gamma_{\rm sr},~\gamma_{\rm sd}$ and $\gamma_{\rm rd}.$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• we assume that the source and the relay only know the statistics of the channels.

End-to-End Channel Condition

- The destination combines the two copies from the source and the relay using MRC.
- It was found the end-to-end channel quality γ as

$$\gamma = \gamma_{sd} + \frac{\gamma_{sr}\gamma_{rd}}{\gamma_{sr} + \gamma_{rd} + 1}.$$

• In order to decode a layer *i*, all previous layers should be first decoded successfully.

$$R_{j} \leq \frac{1}{2} \log \left(1 + \frac{\alpha_{j}}{\frac{1}{\gamma} + \sum_{m>j}^{M} \alpha_{m}} \right) \quad \forall j \leq i.$$
$$\gamma \geq \bar{\gamma}_{i} = \left\{ \bar{\gamma}_{i-1}, \frac{1}{\frac{\alpha_{i}}{2^{2R_{i}} - 1} - \sum_{m>i}^{M} \alpha_{m}} \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Channe	el Approxir	nation			

• The value of γ can be bounded as

$$\gamma_{sd} < \gamma \leq \gamma_{sd} + \min(\gamma_{sr}, \gamma_{rd}).$$

• Which can intuitively be written as

$$\gamma \approx \gamma_{sd} + k \min(\gamma_{sr}, \gamma_{rd}),$$

 Therefore for the fading of the channels is Rayleigh distributed, the CDF of γ:

$$F_{\gamma}(\gamma) = 1 - \frac{\beta_3}{\beta_3 - \beta'} e^{-\gamma(\beta')} + \frac{\beta'}{\beta_3 - \beta'} e^{-\gamma\beta_3}$$

where $\beta' = \frac{\beta_2 + \beta_3}{k}$, $\beta_1 = \frac{1}{\bar{\gamma}}$, $\beta_2 = \frac{1}{m_1 \bar{\gamma}}$, and $\beta_3 = \frac{1}{m_2 \bar{\gamma}}$.

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Channe	l Approxin	nation			

 The appropriate value for k should be used (0 < k ≤ 1) such that the approximate CDF becomes as close as possible to the exact CDF of γ found numerically.

$m_1\bar{\gamma}, m_2\bar{\gamma}$	<0.5	0.5	0.8	1.2	2.2	4	7	10	25	50	70	150	250	500	1000	2000	6500	≥ 20000
<0.5	0.4	0.4	0.45	0.45	0 55	0.625	0.7	0.75	0.85	0.9	0.925	0.05	0.075					-
0.5	0.4	0.4	0.45	0.45		0.625			0.85	0.9	0.925			-	-	÷	1	-
0.8	0.45	0.45	0.45	0.45	0.55		0.675				0.925	0.95	0.975	-	-	÷	1	-
1.2	0.45	0.45	0.45	0.5	0.55	0.6	0.65	0.725	0.825	0.875		0.95		0.975	-	÷	1	-
2.2	0.55	0.55	0.55	0.55		0.575				0.825		0.95	0.95		0.975	÷	1	-
4	0.625					0.575		0.625		0.775		0.9		0.95		0 975	1	-
4	0.025		0.675		0.0.0	0.0.0	0.6			0.725		0.0.0	0.875	0.50	0.50	0.975	1	-
10	0.75		0.725			0.625		0.6	0.65	0.725	0.75	0.85	0.85	0.925	0.95	0.95	1	-
25	0.85		0.825	0.8	0.75	0.010	0.0			0.675		0.75	0.85	0.85	0.95	0.95	1	1
50	0.9	0.9	0.020			0.775				0.65			0.75		0.875	0.9	1	-
70	0.925		0.5	0.075	0.85	0.8	0.75	0.75	0.7		0.675		0.75	0.8	0.85	0.9	0.95	-
150	0.925	0.925	0.95	0.95	0.85	0.875		0.75	0.75	0.075	0.075	0.7	0.75	0.8	0.85	0.9	0.95	-
250	0.975			0.95	0.95		0.875		0.8	0.75	0.75	0.75	0.75	0.8	0.85	0.9	0.95	-
500	1	1	1	0.975			0.925		0.85	0.8	0.8	0.8	0.8	0.8	0.85	0.9	0.95	-
1000	1	-	-	1	0.95		0.925	0.95	0.85	0.875		0.85	0.85	0.85	0.85	0.9	0.95	-
2000	1	-	-	-	1	0.95	0.50	0.95	0.95	0.875	0.85	0.85	0.85	0.85	0.85	0.9	0.95	-
6500	1	1	1	-	1	1.9/5	1	0.95	0.95	1	0.95	0.95	0.95	0.95	0.95	0.95	0.95	-
>20000		1	1	-	1	1	1	1	1	1	0.95	0.95	0.95	0.95	0.95	0.95	0.95	-
220000	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	-

• Our objective in this paper is to optimally allocate power for the layers in order to maximize the expected utility function

$$\max_{\alpha,R} \int_0^\infty f_{\gamma}(\gamma) \quad U(\bar{R}(\gamma,\alpha,R)) d\gamma$$

subject to
$$\sum_{i=1}^M \alpha_i = 1, \qquad \alpha_i \ge 0 \qquad \forall i,$$

• We start by doing the change of variables step

$$b_i = 2^{2R_i} - 1$$
$$\bar{n}_i = \frac{1}{\bar{\gamma}_i}.$$

• Then we have the following problem

$$\begin{split} \max_{b,\bar{n}} & \sum_{i=1}^{M} U(b_i) \left(F_n(\bar{n}_i) - F_n(\bar{n}_{i+1}) \right) \\ \text{subject to} & \sum_{i=1}^{M} b_i(\bar{n}_i - \bar{n}_{i+1}) = 1, \\ & 0 < \bar{n}_M \le \bar{n}_{M-1} \le \ldots \le \bar{n}_1, \\ & b_M \ge b_{M-1} \ge \ldots \ge b_1 > 0, \end{split}$$

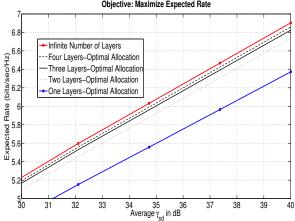
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $c_i = U_i - U_{i-1}$.

- It was found by [Shaqfeh '13] that a unique solution exists for this problem with using the full number of layers.
- Also, a strong duality between the primal and the dual problem is guaranteed.
- Then we have the following KKT conditions (2M + 1 equations):

$$\begin{split} & \frac{\Delta U_i}{\Delta b_i} f_n(\bar{n}_i) = \lambda \qquad \forall i, \\ & \frac{\Delta F_i}{\Delta \bar{n}_i} U'(b_i) = \lambda \qquad \forall i, \\ & \sum_{i=1}^M b_i(\bar{n}_i - \bar{n}_{i+1}) = 1, \end{split}$$

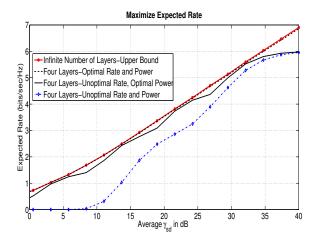
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで


Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Problem	n Formula	tion			

- We can solve this problem by doing 2-dimensional bisection search over λ and n_M to find n'_is and b'_is .
- Hence we can find $\gamma'_i s$ and $R'_i s$ (Optimal rates and channel thresholds).

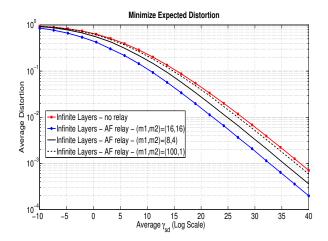
ション ふゆ アメリア メリア しょうめん

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions


Maximize Expected Rate

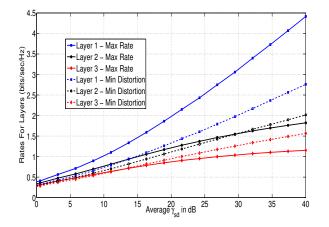
Objective: Maximize Expected Rate

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results 0●000	Conclusions


Maximize Expected Rate

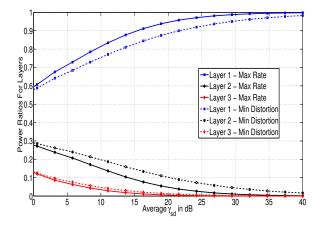
▲□▶ ▲□▶ ★ 国▶ ★ 国▶ - 国 - のへの

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions


Minimize Expected Distortion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results 000●0	Conclusions


Optimal Rates for M=3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results 0000●	Conclusions

Optimal Power Ratios for M=3

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions
Conclus	ions				

- We have considered Multilayer transmission with M layers using the broadcast approach.
- A relay has been considered that applies AF strategy.
- We have proposed a simple approximation for the end-to-end channel statistics.
- We found a unique solution of using the full number of layers.
- We have shown that with a relatively small number of layers, we can approach the upper bound corresponding the infinite number of layers case.
- The numerical results demonstrate that for high values of SNR, the no-relay case may show better performance.

Introduction 0000000	System Model	Channel Characterization	Formulation	Simulation Results	Conclusions

Thank you for your time and attention. Questions?

