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Phase Retrieval and Applications

Definition

Phase Retrieval: Recovery of a signal given the magnitude of its
measurements.

Applications:

o X-ray crystallography: recover Bragg peaks from missing-phase data
e Diffraction imaging, optics, astronomical imaging, microscopy

@ Acoustics, blind channel estimation, interferometry, quantum
information
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Mathematical Formulation

Consider data x € CN, sampler set F = {f,f,--- ,f)y} and
measurements y = [y1, 2, ,ym] " € RY

Yi = |<X,f,‘>|

Heng Qiao, Piya Pal (UMD) Phase Retrieval with PNFS November 14, 2015 4 /22



Mathematical Formulation

Consider data x € CN, sampler set F = {f,f,--- ,f)y} and
measurements y = [y1, 2, ,ym] " € RY

Yi= |<X,f,‘>|
& y? = fHxxMf;

Heng Qiao, Piya Pal (UMD) Phase Retrieval with PNFS November 14, 2015 4 /22



Mathematical Formulation

Consider data x € CN, sampler set F = {f,f,--- ,f)y} and
measurements y = [y1, 2, ,ym] " € RY

Yi= |<X,f,‘>|
& y? = fHxxMf;

sy = (f,-T ® f,H) Vec (xxH>

Heng Qiao, Piya Pal (UMD) Phase Retrieval with PNFS November 14, 2015 4 /22



Mathematical Formulation

Consider data x € CN, sampler set F = {f,f,--- ,f)y} and
measurements y = [y1, 2, ,ym] " € RY

Yi = ’<X,f,‘>|

& y? = fHxxMf;
sy = (f,-T ® f,H) Vec (xxH>

F can consist of either Fourier or general samplers [1].
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Prior Art and Results

Following is the summary of contemporary results on sufficient M [1]:

@ For general data x and samplers F, M = 4N — 4 is sufficient.
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Prior Art and Results

Following is the summary of contemporary results on sufficient M [1]:

@ For general data x and samplers F, M = 4N — 4 is sufficient.

@ For s-sparse data x:
o If F consists of DFT samplers, M > s> — s + 1 with Collision Free
Condition [2].
o If F consists of random samplers, M = O(slog N) is sufficient via
convex program.
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Coupling Difficulty and Collision Free Condition

If the samplers in F are drawn from DFT of proper dimension, phase
retrieval can be formulated as recovering data from its autocorrelation
ry € C2N=1 defined as

min{N,N—/}
Wi= > X% 0<|<N-1
k=max{1,1-/}

The pair-wise products are coupled together which hides the sparse
support of x. To avoid this, Collision Free Condition is proposed [2].

Definition

(Collision-Free Condition) [2] A sparse vector x has collision-free
property if for pairs of distinct entries (p, q), (m, n) in the support of x,

p—q# m— n unless (p,q) = (mn).
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Objectives of this paper

o F consists of Fourier samplers.

@ The sufficient measurement number M should be O(slog N) with
convex program.

@ The Collision Free Condition on the sparse support should be relaxed.
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Partial Nested Fourier Sampler

PNFS is a generalization of DFT-based sampler which with nested index
array instead of consecutive one

Definition
(Partial Nested Fourier Sampler:) We define a Partial Nested Fourier
Sampler (PNFS) as

2 N-1 2N—2] T

_ 1
f,-—a{z,-,z,-,--- Zp T, Z;

where a = (4N — 5)71/% and z = /27(i=1)/(4N=5)
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Decoupling Effect of Nested Index Set

The nested index set N = {1,2,--- /N —1,2N — 2} can resolve the
coupling difficulty by exploiting the second-order difference set.

Example

Consider N = 3 and two different index set A7 = {0, 1,2} and
Ny ={0,1,3}. N is a nested index set.
For N, ignoring the negative part, we have

{20 xi X1, x0%0, x3X3} {2} : x1%0, 3053} {27 : x1 X3}
For A we have

{20 xi X1, x0%0, x3X3} {2} - xa%o} {22 xox3} {22 : x1%3}
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coupling difficulty by exploiting the second-order difference set.

Example

Consider N = 3 and two different index set A7 = {0, 1,2} and
Ny ={0,1,3}. N is a nested index set.
For N, ignoring the negative part, we have

{20 xi X1, x0%0, x3X3} {2} : x1%0, 3053} {27 : x1 X3}
For A we have

{20 xi X1, x0%0, x3X3} {2} - xa%o} {22 xox3} {22 : x1%3}

Advantage: The sparse support is revealed in vectorized measurements
model.
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Measurement Structure with PNFS

Plugging the PNFS sampler f; into vectorized measurement model, we
have

1 _(2N—
2 (2N-3) -1 1
R =g 5 e
,z,?N—ﬂ % (1)
where ¥ € C*N=5 s the corresponding rearranged version of Vec(xx!)
with following form
ZLV:1 |xk[? m=0
SN T Xk Rkpm m=1,2,-+ N =2
%], = (2)
XoN_2—mXN N-1 <m< 2N —3
X]_,, m < 0
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Permuted Version of PNFS

The support of x is easily identified in X if xy is nonzero. If no prior
knowledge available, we will need column-permuted version of PNFS
defined as

1
= V4N-:§[4hz?f"a%N*3 "2 nv (3)

N is a permuting matrix such that the vector x() = N()x satisfies
[X(I)]/ = XN, [X(I)]N = X/, [X(I)],' = Xj, i ;é /, N.

For each /, we collect M phaseless measurements y,.(’), i=1,2,--- ,M
using the permuted PNFS vector (3) and obtain

g = zz? (4)

where [§(]; = ()/,-(l))27 Z]im =
m < 2N —3.
Objective: If x is non-zero, we will finally find M) such that [x()]y # 0.

Wes 1< i< M, —2N+3<
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lterative Algorithm

Input: data x  Output: estimation x#
Initialization: | = N
Loop:
© Step S1: Using the permuted PNFS vectors (3), obtain 4N — 5
phaseless measurements

Yy = <x D> i=1,2--4N-5

Recover %) = z—1§()
@ Step S2: If [x()],, = 0,¥|m| > N — 1, declare x; = 0. Assign
| — I — 1 and go back to Step S1.
If [%()], # O for some m with [m| > N — 1, proceed to the recovery

stage.
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Iterative Algorithm: Continued

Recovery:
@ Choose m* € {1,2,---, N — 2} such that [X()],,- # 0 and compute

|X/v | = \/[ ()]m*/ﬁ

& 8= 0 E Doy -2k [ZKOlop ok
@ Obtain estimate x* as

z()
(B ) a2 g1m)
N
x| g=1
£ oy_o
[ ]22\//)‘2 ! q — N

|XN

[X#]q =
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Performance of lterative Algorithm

The complexity of the algorithm mainly depends on the number of trials to
find [x(N]y # 0.

Let x € CN be s-sparse with s > 3. The estimate x* produced by the
iterative algorithm described in Table 1 is equal to x (in the sense of

C\ T) if the total number of phaseless measurements M equals 4N — 5 for
the best case and (N — s + 1)(4N — 5) for the worst case.

If x is not sparse (i.e. s = N), the number of measurements needed for

recovering x is M = 4N — 5.
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Sketch of Proof

The main idea in the proof is to show the existence of m* such that
[%(D],+ # 0. Denote X = [x1,x2,--- ,xn_1]" and let ry € C?N=3 be the
autocorrelation vector of X. Suppose m* does not exist, implying [X],, = 0
for 1 < |m| < N — 2. Hence, [rz], = v5(n) where v = [X]o — |xn|? and
5(n) is Kronecker delta. This means that fz(e/*) £ Z,’Y;ENH[r;(]ne*f‘”” is
an all-pass filter. However, fx(e/) = |X(e/*)[2 where

x(e/v) & ZHN:_ENH[)'(],,e*j‘””. This implies X(e/*) is also an all-pass filter.

Since ;'((ejw) is an FIR filter, this is not possible unless we have
[X]n = Ao(n — no) (5)

for some ng satisfying 1 < ng < N —1 and X is a constant. However, since
s > 3, X has at least two non zero entries which contradicts (5).
Therefore, the existence of m* is guaranteed.
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autocorrelation vector of X. Suppose m* does not exist, implying [X],, = 0
for 1 < |m| < N — 2. Hence, [rz], = v5(n) where v = [X]o — |xn|? and
5(n) is Kronecker delta. This means that fz(e/*) £ Z,’Y;ENH[r;(]ne*j‘”” is
an all-pass filter. However, fx(e/) = |X(e/*)[2 where

x(e/v) & ZHN:_ENH[)'(],,e*j‘””. This implies X(e/*) is also an all-pass filter.

Since ;'((ejw) is an FIR filter, this is not possible unless we have
[X]n = Ao(n — no) (5)

for some ng satisfying 1 < ng < N —1 and X is a constant. However, since
s > 3, X has at least two non zero entries which contradicts (5).
Therefore, the existence of m* is guaranteed.

Observation: PNFS hits the lower bound 4N — 5 if x has no zero entries.
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Cancellation of Measurements

If we have some prior knowledge of x that xp is nonzero, PNFS can
achieve better bound for sparse phase retrieval. This is based on the idea
of cancellation via two sets of measurements, §,§ € CM as

5l = <xf > (6)
5 = | <x.f > (7)
where f; denotes the PNFS vector (as in Def. 3) and f; is defined as

/ 1
= s [ 22, 2P (5)

VaN -5

where z; = e/2m(i—1)/(4N-5)
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Cancellation of Measurements: Continued

Denoting § = § — ¥, we have

y=2Zx (9)
where
( |X/\/|2 m=20
0 m=12--- N-2
X1, =
X2N—2—m)_<N m:N—l,---,2N—3
L X, m<0

and Z € CMAN=5 defined as in (4). Notice that % has sparsity 2s — 1 and
support of x (except the Nth entry) is identical to that of the subvector of

X indexed by m=N—-1,..- 2N — 3.
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Number of Measurements

The power of cancellation is revealing the sparse support of x and then
convex program is applicable.
We can recover X by solving the /; minimization:

mgin |10]|]1 subject toy =26 (P1)

The vector x can then be recovered from the solution of (P1).
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Number of Measurements

The power of cancellation is revealing the sparse support of x and then
convex program is applicable.
We can recover X by solving the /; minimization:

mein |10]|]1 subject toy =26 (P1)

The vector x can then be recovered from the solution of (P1).

Theorem

Let x € CN be a sparse vector with s non zero elements and xp # 0.
Suppose we construct the difference measurement vector § as in (9) using
M pairs of sampling vectors {f;k,f;k}kle where indices iy are selected
uniformly at random between 1 and 4N — 5. Then x can be recovered (in
sense of C\ T) by solving (P1) if M = CslogN for some constant C.
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Inefficiency of Collision Free Condition

probability
o’ o
D o]

o
i

o
1)

5 10 25 30 35

15 20
sparsity s

Figure: The probability of "no-collision” as a function of sparsity s. The ambient
dimension is N = 10000 and the result is averaged over 2000 runs.
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Validation of the Theorem 2

The global phase ambiguity is p = xN/x,f,é. Using p we can compute the
entry-wise estimation error as |x; — px,-#] for1 <i<N.

measurement number M

10 15
sparsity s

Figure: The phase transition plot for Theorem 2. M = 2M is the total number of
measurements needed and N = 150. The red line represents 3slogN. The color
bar denotes probability of success from 0 to 1. The white cells denote successful
recoveries (i.e. |x; — px/*| < 107° for all entries) and black cells denote

failures. The results are averaged over 100 runs.
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Contribution Summary

@ The PNFS are general Fourier samplers and can be easily
implemented via DFT plus coded diffraction [3].

@ The recovery algorithm is deterministic for general case and hits lower
bound for nowhere vanishing data x.

o If prior knowledge available, O(slog N) is possible with cancellation
process and convex program.
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