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Abstract— The diversity of today’s playback systems requires 

a flexible, efficient, and immersive reproduction of sound scenes 

in digital media. Spatial audio reproduction based on 

primary-ambient extraction (PAE) fulfills this objective, where 

accurate extraction of primary and ambient components from 

sound mixtures in channel-based audio is crucial. Severe 

extraction error was found in existing PAE approaches when 

dealing with sound mixtures that contain a relatively strong 

ambient component, a commonly encountered case in the sound 

scenes of digital media. In this paper, we propose a novel ambient 

spectrum estimation (ASE) framework to improve the 

performance of PAE. The ASE framework exploits the equal 

magnitude of the uncorrelated ambient components in two 

channels of a stereo signal, and reformulates the PAE problem 

into the problem of estimating either ambient phase or 

magnitude. In particular, we take advantage of the sparse 

characteristic of the primary components to derive sparse 

solutions for ASE based PAE, together with an approximate 

solution that can significantly reduce the computational cost. Our 

objective and subjective experimental results demonstrate that 

the proposed ASE approaches significantly outperform existing 

approaches, especially when the ambient component is relatively 

strong. 

 
Index Terms—Primary-ambient extraction (PAE), spatial 

audio, ambient spectrum estimation (ASE), sparsity, 

computational efficiency. 

I. INTRODUCTION 

PATIAL audio reproduction of digital media (such as 

movies and video games) has gained significant popularity 

over the recent years [1]. The reproduction methods generally 

differ in the formats of audio content. Despite the growing 

interest in object-based audio formats [1], such as Dolby Atmos 

[2], DTS multi-dimensional audio (DTS: X) [3], most existing 

digital media content is still in channel-based formats (such as 

stereo and multichannel signals). The channel-based audio is 

usually specific in its playback configuration, and it does not 

support flexible playback configurations in domestic or 
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personal listening circumstances [1]. Considering the wide 

diversity of today’s playback systems [4], it becomes necessary 

to process audio signals such that the reproduction of the audio 

content is not only compatible with various playback systems 

Depending on the actual playback system, the challenges in 

spatial audio reproduction can be broadly categorized into two 

main types: loudspeaker playback and headphone playback [7]. 

The challenge in loudspeaker playback deals with the mismatch 

of loudspeaker playback systems in home theater applications, 

where the number of loudspeakers [8] or even the type of 

loudspeakers [9]-[11] between the intended loudspeaker system 

(based on the audio content) and the actual loudspeaker system 

is different. Conventional techniques to solve this challenge are 

often referred to as audio remixing (i.e., downmix and upmix), 

for example, “Left only, Right only (LoRo)”, “Left total, Right 

total (LtRt)”, matrix-based mixing surround sound systems, etc 

[8], [12]-[14]. These audio remixing techniques basically 

compute the loudspeaker signals as the weighted sums of the 

input signals. For headphone playback, the challenge arises 

when the audio content is not tailored for headphone playback 

(usually intended for loudspeaker playback). Virtualization is 

often regarded as the technique to solve this challenge [15], 

where virtualization of loudspeakers is achieved by binaural 

rendering, i.e., convolving the channel-based signals with 

head-related impulse responses (HRIRs) of the corresponding 

loudspeaker positions. These conventional techniques in spatial 

audio reproduction are capable of solving the compatibility 

issue, but the spatial quality of the reproduced sound scene is 

usually limited [12], [16]-[18]. To improve the spatial quality 

of the sound reproduction, the MPEG audio standardization 

group proposed MPEG Surround and related techniques, which 

typically address the multichannel and binaural audio 

reproduction problem based on human perception [19]-[21]. In 

the synthesis, these techniques usually employ the one-channel 

downmixed signal and the subband spatial cues, which better 

suit the reproduction of the distinct directional source signals as 

compared to the diffuse signals [19], [22]. 

To further improve the quality of the reproduced sound 

scene, the perception of the sound scenes is considered as a 

combination of the foreground sound and background sound 

[23], which are often referred to as primary (or direct) and 

ambient (or diffuse) components, respectively [24]-[27]. The 

primary components consist of point-like directional sound 

sources, whereas the ambient components are made up of 

diffuse environmental sound, such as the reverberation, 
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applause, or nature sound like waterfall [22], [28]. Due to the 

perceptual differences between the primary and ambient 

components, different rendering schemes should be applied to 

the primary and ambient components for optimal spatial audio 

reproduction of sound scenes [22], [29]. However, the existing 

channel-based audio formats provide only the mixed signals 

[30], which necessitate the process of extracting primary and 

ambient components from the mixed signals. This extraction 

process is usually known as the primary-ambient extraction 

(PAE).  

As a spatial audio processing tool [8], [16], [17], [19], [26], 

[29], PAE can also be incorporated into spatial audio coding 

systems, such as spatial audio scene coding [24], [31], and 

directional audio coding [32]. Essentially, PAE serves as a 

front-end to facilitate flexible, efficient, and immersive spatial 

audio reproduction. First, by decomposing the primary and 

ambient components of the sound scene, PAE enables the 

sound reproduction format to be independent of the input 

format, hence increasing the flexibility of spatial audio 

reproduction [31], [33]. Second, PAE based reproduction of 

sound scenes does not require the individual sound objects as in 

object-based format (which is the most flexible), but is able to 

recreate perceptually similar sound scenes, hence maintaining 

the efficiency of spatial audio reproduction [25]. Last but not 

least, PAE extracts the two key components of the sound 

scenes, namely, directional and diffuse sound components. 

These components are highly useful in recreating an immersive 

listening experience of the sound scene [24], [34]-[36]. 

Figure 1 illustrates the PAE based spatial audio reproduction 

system, where the primary and ambient components undergo 

different rendering schemes [25]. The rendering schemes differ 

for loudspeaker or headphone playback [28], [34], [37]. For 

loudspeaker playback, the primary components are reproduced 

using vector base amplitude panning (VBAP) [32] or vector 

base intensity panning [38], [39] to reproduce the accurate 

direction of the sound sources. The ambient components, on the 

other hand, are further decorrelated and distributed to all the 

loudspeaker channels to create an envelopment effect of the 

sound environment [24], [40]. For headphone playback, the 

conventional virtualization that simply applies binaural 

rendering to the mixed channel-based signals is problematic 

[16], [17]. PAE based virtualization resolves this problem by 

applying binaural rendering to the extracted primary 

components, creating accurate virtual sound sources in the 

desired directions [17] for headphone playback [26], [41]. 

Similar to the loudspeaker playback case, the ambient 

components are decorrelated using artificial reverberation [19], 

[24], [28], [29] to create a more natural sound environment. 

Numerous approaches are applied to solve PAE with stereo 

and multichannel input signals [22], [42]. In this paper, we 

focus on stereo input signals since they are still one of the most 

widely used formats and the PAE approaches for stereo signals 

can be extended to deal with multichannel signals [22], 

[42]-[44]. For the basic signal model, the (stereo) mixed signal 

is considered as the sum of the primary and ambient 

components. The primary and ambient components are mainly 

discriminated by their inter-channel cross-correlations, i.e., the 

primary and ambient components are considered to be 

correlated and uncorrelated, respectively [22]. Based on this 

model, time-frequency masking approaches were introduced, 

where the mask is obtained as a nonlinear function of the 

inter-channel coherence of the input signal [28] or derived 

based on the characteristic that ambient components have equal 

level in the two channels of the stereo signal [42], [45]. Further 

investigation of the differences between two channels of the 

stereo signals has led to several types of linear estimation based 

approaches [46], including principal component analysis (PCA) 

based approaches [11], [22], [45]-[53] and least-squares based 

approaches [40], [46], [54]. These linear estimation based 

approaches extract the primary and ambient components using 

different performance-related criteria [46]. To deal with 

complex input signals that do not satisfy the basic stereo signal 

model, other PAE approaches consider signal model 

classification [55], time/phase differences in primary 

components [25], [35], [53], [56] non-negative matrix 

factorization [57], independent component analysis [58], etc. 

Due to the nature of summing input signals directly [46], the 

aforementioned PAE approaches often have difficulty in 

removing uncorrelated ambient component in the extracted 

primary and ambient components. The extraction error in these 

PAE approaches is more severe when the ambient component is 

relatively strong compared to the primary component [46], as 

often encountered in digital media content, including busy 

sound scenes with many discrete sound sources that contribute 

to the environment as well as strong reverberation indoor 

environment. In [59], we proposed an ambient phase estimation 

(APE) framework to improve the performance of PAE. The 

APE framework exploits the equal-magnitude characteristic of 

uncorrelated ambient components in the mixed signals of 

digital media content and was solved by pursuing the sparsity 

of the primary components [60] (this approach is known as 

APES [59]). However, due to the trigonometric operations 

required in the estimation of the ambient phase, the 

computational cost of APES is still too high. In this paper, we 

re-consider the PAE problem from a higher level, i.e., from the 

perspective of ambient spectrum estimation (ASE). Besides 

APE, a new formulation referred to as ambient magnitude 

estimation (AME) is derived and solved using the same 

criterion as in APES. Furthermore, an approximate solution to 

the ASE problem shall be discussed, so as to further reduce the 

computational cost. 

A comparative analysis on the objective performance of the 

proposed ASE approaches and existing PAE approaches in 

terms of exaction error and computational efficiency is 

conducted with our simulations. To perform an in-depth 
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Fig. 1. Block diagram of PAE based spatial audio reproduction 

[25]. 
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evaluation of these PAE approaches, the performance measures 

proposed in [46] are adopted. However, the calculation of these 

performance measures in [46] is only applicable for PAE 

approaches with analytic solutions. Therefore, we propose a 

novel technique to compute these measures for PAE 

approaches without analytic solutions, as is the case with the 

proposed ASE approaches. Moreover, statistical variations are 

introduced to the ambient magnitudes to examine the 

robustness of the proposed ASE approaches. Furthermore, 

subjective listening tests are conducted to complement the 

objective evaluation. 

The remainder of this paper is structured as follows. In 

Section II, we review the basic stereo signal model. The 

ambient spectrum estimation framework for PAE, including 

APE and AME, is formulated in Section III. This is followed by 

the proposed solutions for ASE in Section IV. Section V 

explains the calculation of the performance measures, which 

are used to evaluate the PAE approaches in the experiments in 

Section VI. Finally, Section VII concludes this paper. 

II. STEREO SIGNAL MODEL 

In spatial audio, PAE is often considered in time-frequency 

domain [17], [20], [22], [28], [32], [40], [45]. It is generally 

assumed that there is only one dominant directional source 

(a.k.a., primary component) in each frequency band of the input 

signal. PAE is independently carried out on each frequency 

band of each frame (consisting of N short frames) of the input 

signal [22], [28], [33], [40], [45]. We denote the stereo signal in 

time-frequency domain at time index n and frequency bin index 

l as  , ,cX n l  where the channel index  0,1 .c  Hence, the 

stereo signal at subband b that consists of bins from
1 1bl    to 

bl   is expressed as 

       1 1, , 1 , , 2 , , ,
T

c c b c b c bn b X n l X n l X n l     X  [38]. 

The stereo signal model is expressed as:

        , , ,    0,1 ,c c cn b n b n b c   X P A  (1) 

where 
cP  and 

cA  are the primary and ambient components in 

the cth channel of the stereo signal, respectively. Since the 

frequency band of the input signal is generally used in the 

analysis of PAE approaches, the indices  ,n b  are omitted for 

brevity.  

The stereo signal model assumes that the primary and 

ambient components in the two channels of the stereo signals 

are correlated and uncorrelated, respectively. Correlated 

primary component can be characterized by time and amplitude 

differences between the two channels [61]. For this paper, we 

shall only consider the primary component to be amplitude 

panned, that is, 
1 0 ,kP P  where k is referred to as the primary 

panning factor [22], [40], [45]. For this paper, we assume 

1k  such that the channel containing the stronger directional 

primary component is channel 1. This amplitude panned 

primary component is commonly found in stereo recordings 

using coincident techniques and sound mixes using 

conventional amplitude panning techniques [30]. Considering 

that only the mixed signal is given as input and no prior 

information is available, it is necessary to estimate k using 

correlations [46] or histograms of amplitude differences [62]. 

For example, based on the autocorrelations of the two channels 

00 11,  ,r r and cross-correlations between the two channels 
01,r  

we can estimate k as 

2

11 00 11 00

01 01

1.
2 2

r r r r
k

r r

  
   

 
 

For an ambient component that is made up of environmental 

sound, it is usually considered to be uncorrelated with the 

primary component [35], [63], [64], as well as being balanced 

in two channels in terms of signal power. To quantify the power 

difference between the primary and ambient components, the 

primary power ratio   is defined as the ratio of total primary 

power to total signal power in two channels: 

 
1 1

2 2

2 2
0 0

,  0,1 .c c

c c

 
 

  P X  Previous study revealed 

that the performance of PAE is highly dependent on  , where 

lower   generally indicates inferior overall extraction 

performance [46]. Using the method described in [46], we 

computed  for many movie and gaming tracks (e.g., Avatar, 

Brave, Battlefield 3, BioShock Infinite), and found that the 

percentage for the cases with over half of the time frames 

having relative strong ambient power (i.e., 0.75  ) is around 

70% in these digital media content examples. Since high 

occurrence of strong ambient power case degrades the overall 

performance of PAE, a PAE approach that also performs well 

in the presence of strong ambient power is desired. 

III. AMBIENT SPECTRUM ESTIMATION  

The diffuseness of ambient components usually leads to low 

cross-correlation between the two channels of the ambient 

components in the stereo signal. During the mixing process, the 

sound engineers synthesize the ambient component using 

various decorrelation techniques, such as introducing delay 

[65], all-pass filtering [66]-[68], artificial reverberation [15], 

and binaural artificial reverberation [69]. These decorrelation 

techniques often maintain the magnitude of ambient 

components in the two channels of the stereo signal. As such, 

we can express the spectrum of ambient components as  

  ,  0,1 ,c c c c  A A W  (2) 

where  denotes element-wise Hadamard product, 

0 1 A A A  is the equal magnitude of the ambient 

components, and the element in the bin (n, l) of cW  is 

   ,
, ,cj n l

cW n l e


  where  ,c n l  is the bin (n, l) of cθ  and 

c c θ A  is the vector of phase samples (in radians) of the 

ambient components. Following these discussions, we shall 

derive the ASE framework for PAE in two ways: ambient phase 

estimation [55] and ambient magnitude estimation. 

 

A. Ambient Phase Estimation 

Considering the panning of the primary component 
1 0 ,kP P  

the primary component in (1) can be cancelled out and we 

arrive at 

 
1 0 1 0.k k  X X A A  (3) 

By substituting (2) into (3), we have 



2329-9290 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TASLP.2015.2434272, IEEE/ACM Transactions on Audio, Speech, and Language Processing

    1 0 1 0. ,k k  A X X W W  (4) 

where . represents the element-wise division. Because 

ambient magnitude A  is real and non-negative, we derive the 

relation between the phases of the two ambient components as 

(refer to Appendix A for detailed derivation) 

  1

0 1arcsin sin ,k     θ θ θ θ   (5) 

where  1 0 .k  θ X X  Furthermore, by substituting (4) and 

(2) into (1), we have 

 
   

     

1 0 1 0

c 1 0 1 0

. ,  

. ,  0,1 .

c c

c c

k k

k k c

  

    

A X X W W W

P X X X W W W
 (6) 

Since 
cX  and k can be directly computed from the input [46], 

0 1,W W  are the only unknown variables on the right hand side 

of the expressions in (6). In other words, the primary and 

ambient components are determined by 
0 1, ,W W  which are 

solely related to the phases of the ambient components. 

Therefore, we reformulate the PAE problem into an ambient 

phase estimation (APE) problem. Based on the relation 

between 
0θ and 

1θ  stated in (5), only one ambient phase 
1θ  

needs to be estimated.  

 

B. Ambient Magnitude Estimation 

To reformulate the PAE problem as an ambient magnitude 

estimation problem, we rewrite (1) for every time-frequency 

bin as: 

 '

0 0 1 0 1 1 1,  .X kX P kA X P A      (7) 

Consider these bin-wise spectra stated in (7) as vectors in 

complex plane (represented by an arrow on top), we can 

express their geometric relations in Fig. 2 as   

 

   

 

'

0 Re Im 1 Re Im

1 Re Im

0 1

OB B ,B ,  OC C ,C ,  

OP P ,P ,  

PB,  PC.

X X

P

k A A

   

 

 

 (8) 

Let r denote the magnitude of the ambient component, i.e., 

0 1 .r A A   Then we have PC ,  PB .r kr   Therefore, 

by drawing two circles with their origins at B and C, we can 

find their intersection point P (select one point when there are 

two intersection points), which corresponds to the spectrum of 

the primary component and leads to the solution for the 

extracted primary and ambient components. For any estimate of 

ambient magnitude ˆ,r  the coordinates of point P shall satisfy 

 
   

   

2 2 2 2

Re Re Im Im

2 2 2

Re Re Im Im

ˆP B P B ,

ˆP C P C .

k r

r

   

   
 (9) 

The solution of  Re ImP ,P  for (9) is given by: 

 

    

    

2 2

Re Re Im ImRe Re

Re 2

2 2

Im Im Re ReIm Im

Im 2

ˆC B 1 B CB C
P̂ ,

2 2 BC

ˆC B 1 B CB C
P̂ ,

2 2 BC

k r

k r





   
 

  
 

 (10) 

where the Euclidean distance between the points B and C, 

   
2 2

Re Re Im ImBC C B C B     and 

   
2 22 22 2ˆ ˆ1 BC 1 BC .k r k r        

      
 Based on (8), 

the spectra of the primary and ambient components can then be 

derived as: 

 
 

   

1

1 Re Im 0 Re Im

1

1 1 Re Im 0 0 Re Im

ˆ ˆ ˆ ˆ ˆ ˆP P ,  P P ,  

ˆ ˆˆ ˆ ˆ ˆP P ,  P P .

P j P k j

A X j A X k j





   

     
 (11) 

Therefore, the PAE problem becomes the problem of 

determining r, i.e., ambient magnitude estimation. The 

approach to determine r and select one of the two solutions in 

(10) will be discussed in Section IV. It can be inferred from Fig. 

2 that determining the ambient magnitude is equivalent to 

determine the ambient phase as either of them will lead to the 

other. Therefore, we conclude that APE and AME are 

equivalent and they are collectively termed as ambient 

spectrum estimation. The block diagram of the ASE based PAE 

is illustrated in Fig. 3. We argue that in theory, by accurately 

obtaining the spectra of ambient components, it is possible to 

achieve perfect extraction (i.e., error-free) of the primary and 

ambient components using the formulation of ASE, which is 

not possible with existing PAE approaches as a consequence of 

residue error from the uncorrelated ambient component [46]. 

IV. AMBIENT SPECTRUM ESTIMATION WITH A 

SPARSITY CONSTRAINT 

The proposed ambient spectrum estimation framework can 

greatly simplify the PAE problem into an estimation problem 

with only one unknown parameter per time-frequency bin. To 

estimate these parameters, we shall exploit other characteristics 

of the primary and ambient components that have not been used 

in previous derivation. One of the most important 

characteristics of sound source signals is sparsity, which has 
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B (BRe, BIm)

C (CRe, CIm)

Re

Im

'

0X

1X 1P
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Fig. 2. Geometric representation of (7) in complex plane in 

AME. 
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been widely used as a critical criterion in finding optimal 

solutions in many audio and music signal processing 

applications [60]. In PAE, since the primary components are 

essentially directional sound sources, they can be considered to 

be sparse in the time-frequency domain [60]. Therefore, we 

estimate the ambient phase or magnitude spectrum by 

restricting that the extracted primary component is sparse. We 

refer to these approaches as ambient spectrum estimation with a 

sparsity constraint (ASES). By applying the sparsity constraint 

in APE and AME, ASES can be divided into two approaches, 

namely, APES and AMES. 

 

A. Ambient Phase Estimation with a Sparsity Constraint 

With a sparsity constraint, the ambient phase estimation 

problem can be expressed as follows: 

 
1

*

1 1ˆ 1

ˆ ˆarg min ,
θ

θ P  (12) 

where 
1

1
P̂ is the 1-norm of the primary component, which is 

equal to the sum of the magnitudes of the primary component 

over the time-frequency bins. Since the objective function in 

(12) is not convex, convex optimization techniques are 

inapplicable. Heuristic methods, like simulated annealing [70], 

require optimization to be performed for all the phase variables, 

and hence are inefficient in solving APES [59]. On this note, a 

more efficient method referred to as discrete searching (DS) to 

estimate ambient phase was proposed in [59]. DS is proposed 

based on the following two observations. First, the magnitude 

of the primary component at one time-frequency bin is solely 

determined by the phase of the ambient component at the same 

time-frequency bin and hence, the estimation in (12) can be 

independently performed for each time-frequency bin. Second, 

the phase variable is bounded to  ,    and high precision of 

the estimated phase may not be necessary. Thus, the optimal 

phase estimates can be selected from an array of discrete phase 

values    1
ˆ 2 ,d d D    where  1,2, ,d D  with D 

being the total number of phase values to be considered. In 

general, the value of D affects the extraction and the 

computational performance of APES using DS [59]. Following 

(5) and (6), a total number of D estimates of the primary 

components can be computed. The estimated phase then 

corresponds to the minimum of magnitudes of the primary 

component, i.e.,  * *

1 1
ˆ ˆ ,d   where 

 
 *

1
1,2, ,

ˆarg min ,
d D

d P d


  

Finally, the extracted primary and ambient components are 

computed using (6). It shall be noted that in DS, a sufficient 

condition of the sparsity constraint was employed in solving the 

APES problem in (12). 

 

B. Ambient Magnitude Estimation with a Sparsity Constraint 

Similarly to APES that is solved using the sparsity constraint, 

the ambient magnitude estimation problem can be expressed as: 

 *

1
ˆ 1

ˆˆ arg min ,
r

r P  (13) 

where r̂  is the estimated ambient magnitude of all the 

time-frequency bins. As no constraints are placed on the 

ambient magnitude spectra among the time-frequency bins in 

one frame, the estimation of ambient magnitude can also be 

considered to be independent for every time-frequency bin. 

Therefore, the estimation of ambient magnitude can be 

obtained individually for every time-frequency bin by 

minimizing the primary magnitude under the AMES 

framework. 

To derive the solution for AMES, we follow the geometric 

relation illustrated in Fig. 2. To ensure the existence of 

intersection point P, the following constraint 

 PC PB BC PB PC ,     (14) 

has to be satisfied, which leads to: 

  , ,lb ubr r r  (15) 

where 
BC BC

, , 1.
1 1

lb ubr r k
k k

   
 

When k = 1, there is no 

physical upper bound from (14). Based on the objective of 

minimizing the magnitude of primary component, we can 

actually enforce an approximate upper bound for k = 1, for 

example, let OB OC ,  1.ubr k     Thus, the ambient 

magnitude is bounded, and the same numerical method DS (as 

used in APES) is employed to estimate r in AMES. Consider an 

array of discrete ambient magnitude values 

 
1 1

ˆ 1 ,  
1 1

lb ub

d d
r d r r

D D

  
   

  
 where  1,2, ,d D with 

D being the total number of ambient magnitude estimates 

considered. For each magnitude estimate  ˆ ,r d  we select the 

one  Re Im
ˆ ˆP ,P  of two solutions from (10) which gives the 

smaller primary magnitude. After derivation, we can unify the 

solution for the selected  Re Im
ˆ ˆP ,P as  

STFT
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Fig. 3. Block diagram of ASE based PAE. 
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where sgn(x) is the sign of x. The estimated magnitude of the 

primary component is obtained as 

      2 2

1 Re Im
ˆ ˆ ˆP P ,P d d d   (17) 

The estimated ambient magnitude then corresponds to the 

minimum of the primary component magnitude, i.e., 

 * *ˆ ˆ ,r r d  where 
 

 *

1
1,2, ,

ˆ=arg min .
d D

d P d


Finally, the 

extracted primary and ambient components are computed using 

(11). 

  

C. Computational Cost of APES and AMES 

In this subsection, we compare the computational cost of APES 

and AMES, as shown in Table I. In general, both AMES and 

APES are quite computational extensive. AMES requires more 

operations which include square root, addition, multiplication, 

and division, but requires no trigonometric operations. By 

contrast, APES requires 7D+6 times of trigonometric 

operations for every time-frequency bin. The computational 

efficiency of these two approaches is affected by the 

implementation of these operations. 

 

D. An Approximate solution: APEX 

To obtain a more efficient approach for ambient spectrum 

estimation, we derive an approximate solution in this 

subsection. For every time-frequency bin, we can rewrite (1) 

for the two channels as: 
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  

 (18) 

where 
0 1,  PA PA   are the phase differences between the spectra 

of the primary and ambient components in channel 0 and 1, 

respectively. From (18), we can obtain that 

 
   

 

22 1

1 1 0 1

2 2

1 0

1 2 cos cos

0.

PA PAk P A k P

X X

    

  
 (19) 

Solving (19) for 
1 ,P we arrive at (20). From (20), when k > 1, 

the minimization of 1P can be approximately achieved by 

minimizing 1

0 1cos cosPA PAk     (considering that 

2 2

1 0X X  in most cases since 1k  ), which leads to 

0 1,  0.PA PA     According to the relation between the two 

ambient phases in (5), we can infer that it is impossible to 

always achieve both 
0PA   and 

1 0PA  at the same time. 

Clearly, since 1,k   a better approximate solution would be 

taking 
1 0.PA   On the other hand, when k = 1, one 

approximate solution to minimize 1P  would be letting 

0 1 .     These constraints can be applied in either APE or 

AME framework. Here, applying the constraints in APE is 

more straightforward and we shall obtain the approximate 

phase estimation as: 

 
 

1*

11

1 0

,              1
ˆ .

,  1

k

k

  
 

   

X
θ

X X
 (21) 

 As the phase (or the phase difference) of the input signals is 

employed in (21), we refer to this approximate solution as 

APEX. As shown in Table I, APEX requires the lowest 

computational cost and is significantly more efficient than 

either APES or AMES. The performance of these approaches 

will be evaluated in the following sections. 

V. EVALUATION OF PAE 

An evaluation framework for PAE was initially proposed in 

[46]. In general, we are concerned with the extraction accuracy 

and spatial accuracy in PAE. The overall extraction accuracy of 

PAE is quantified by error-to-signal ratio (ESR, in dB) of the 

extracted primary and ambient components, where lower ESR 

indicates better extraction of these components. The ESR for 

the primary and ambient components are computed as 
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 (22) 

Table I: Computational cost of APES, AMES and APEX (for every time-frequency bin) 

Operation Square root Addition Multiplication Division Comparison Trigonometric operation 

APES D 15D+18 15D+13 4D+6 D-1 7D+6 

AMES 2D+2 25D+35 24D+24 9D+13 D-1 0 

APEX 0 13 7 4 1 7 

D: number of phase or magnitude estimates in discrete searching 
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 (20) 

The extraction error can be further decomposed into three 

components, namely, the distortion, interference, and leakage 

(refer to [46] for the explanation of these three error 

components). Corresponding performance measures of these 

error components can be computed directly for PAE 

approaches with analytic solutions. As there is no analytic 

solution for these ASE approaches, we need to find alternative 

ways to compute these measures. In this section, we propose a 

novel optimization technique to estimate these performance 

measures.  

First, we consider the extracted primary component in time 

domain ˆ .cp  Since the true primary components in two channels 

are completely correlated, no interference is incurred [46]. 

Thus we can express ˆ
cp as 

 ˆ ,
c cc c Leak Dist  

p p
p p  (23) 

where the leakage is  ,0 0 ,1 1 ,
c Pc PcLeak w w 

p
a a  and the 

distortion is .
c

Dist
p  To compute the measures, we need to 

estimate 
,0 ,1,Pc Pcw w  first. Considering that 

0 1,  ,  and cp a a  are 

inter-uncorrelated, we propose the following way to estimate 

,0 ,1, ,Pc Pcw w  with  

 
 

 
,0 ,1

2
* *

,0 ,1 ,0 0 ,1 1
2,

ˆ, arg min ,
Pc Pc

Pc Pc c c Pc Pc
w w

w w w w   p p a a  (24) 

Thus, we can compute the measures, leakage-to-signal ratio 

(LSR) and distortion-to-signal ratio (DSR), for the primary 

components as 
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Second, we express ˆ
ca  in a similar way, as 

 ˆ ,
c c cc c Leak Intf Dist   

a a a
a a  (26) 

where the leakage is , ,
c Ac c cLeak w

a
p and the interference 

,1 1c Ac c cIntf w  
a

a originates from the uncorrelated ambient 

component. The two weight parameters , ,1,Ac c Ac cw w  can be 

estimated as 
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Thus, we compute the measures LSR, interference-to-signal 

ratio (ISR), and (DSR) for the ambient components using 
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(28) 

Previous experience on evaluating linear estimation based PAE 

approaches such as PCA and least-squares suggests that these 

parameters 
,0 ,1 , ,1, , ,Pc Pc Ac c Ac cw w w w 

are bounded to [-1, 1], 

hence we can employ a simple numerical searching method 

similar to DS to determine the optimal estimates of these 

parameters using a certain precision [46]. As audio signals from 

digital media are quite non-stationary, these measures shall be 

computed for every frame and can be averaged to obtain the 

overall performance for the whole track.  

On the other hand, spatial accuracy is measured using the 

inter-channel cues. For primary components, the accuracy of 

the sound localization is mainly evaluated using inter-channel 

time and level differences (i.e., ICTD and ICLD). In this paper, 

there is no ICTD involved in the basic mixing model for stereo 

input signals, and the ICLD is essentially determined by the 

estimation of k, which is common between the proposed 

approaches and the existing linear estimation based approaches 

such as PCA [46]. For these two reasons, spatial accuracy is not 

evaluated for primary component extraction, but is focused on 

the extraction of ambient components. The spatial accuracy of 

the ambient component is evaluated in terms of its diffuseness, 

as quantified by inter-channel cross-correlation coefficient 

(ICC, from 0 to 1) and the ICLD (in dB). It is clear that a more 

diffuse ambient component requires both ICC and ICLD to be 

closer to 0.  

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we shall present a comprehensive objective and 

subjective evaluation of the proposed ASE approaches and two 

existing PAE approaches, namely, PCA [22], and 

time-frequency masking [45]. In these experiments, the 

searching method of APES or AMES is DS with D = 100. 

Based on the performance measures introduced in Section V, 

we shall compare the overall extraction error performance, the 

specific error performance including leakage, distortion, and 

interference, as well as the spatial accuracy of the ambient 

components. Additionally, we will also compare the efficiency 

of these PAE approaches in terms of the computation time 

based on our simulation. To examine the robustness of these 
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PAE approaches, we evaluate the proposed approaches using 

synthesized mixed signal with unequal ambient magnitude in 

two channels. Lastly, subjective listening tests were conducted 

to examine the perceptual timbre and spatial quality of different 

PAE approaches. The stereo mixed signals employed in the 

experiments are synthesized in the following way. One frame 

(4096 samples, sampling rate: 44.1 kHz) of speech signal is 

selected as the primary component, which is amplitude panned 

to channel 1 with a panning factor  1,  2,  4 .k  A wave 

lapping sound recorded at the beach is selected as the ambient 

component, which is decorrelated using all-pass filters with 

random phase [68]. The stereo signal is obtained by mixing the 

primary and ambient components based on different   values 

ranging from 0 to 1 with an interval of 0.1. 

First, we compare the overall performance of the three ASE 

approaches with two other PAE approaches in the literature, 

namely, PCA [22] and Masking [45]. For the proposed ASE 

approaches, FFT size is set as 4096 while for Masking, the best 

setting for FFT size is found as 64. The ESR of these 

approaches with respect to different values of    and k is 

illustrated in Fig. 4. Our observations of the ESR performance 

are as follows: 

1) Generally, the performance of all these PAE approaches 

varies with  . As  increases, ESRP decreases while ESRA 

increases (except ESRA of PCA). Considering primary 

components to be more important in most applications, it 

becomes apparent that the two representative existing 

approaches cannot perform well when  is low. 

2) Primary panning factor k is the other factor that affects the 

ESR performance of these PAE approaches except PCA. 

For the Masking approach, the influence of k is 

insignificant for most cases except ESRP at very low   

and ESRA at very high  . By contrast, the ASE approaches 

are more sensitive to k. The ESR of APES and AMES are 

lower at higher k, especially when   is high. For APEX, 

the performance varies between k > 1, and k = 1, which was 

implied in (21). 

3) Irrespective of   and k, APES and AMES perform quite 

similar. Both APES and AMES outperform existing 

approaches at lower  , i.e., from  < 0.8 when k = {2, 4} to 

 < 0.5 when k = 1. APEX can be considered as an 

approximate solution to APES or AMES for k > 1, and 

when k = 1, it becomes identical to PCA (this can also be 

verified theoretically). 

Second, we look into the specific error performance of ASE 

approaches at k = 2. Note that there are some slight variations in 

these error measures for close   values, which is due to the 

inaccuracy in the estimation of specific error components. 

Nevertheless, we can observe the following trends. As shown in 

Fig. 5(a) and 5(b), we found that the performance improvement 

of ASE approaches in extracting primary components lies in the 

reduction of the ambient leakage, though at the cost of 

introducing more distortion. For ambient component extraction, 

PCA and Masking yield the least amount of leakage and 

interference, respectively. Note that the little amount of leakage 

in PCA and interference in Masking are actually due to the 

estimation error, since none of them theoretically exist in the 

extracted ambient components. Nevertheless, the ASE 

approaches yields moderate amount of these errors, which 

results in a better overall performance. 

Third, we examine the spatial accuracy of PAE in terms of 

the diffuseness of the extracted ambient components. As shown 
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Fig. 4. Comparison of the ESR of (a-c) extracted primary components and (d-f) extracted ambient components, with respect to 

different k values, using APES, AMES, APEX, PCA [22], and Masking [45].  
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in Fig. 6(a)-(c), the lowest and highest ICC are achieved with 

true ambient components and ambient components extracted by 

PCA, respectively. The ASE approaches outperform the 

existing approaches, and are more effective in extracting 

diffuse ambient components at higher k and lower  . For ICLD 

of the extracted ambient components as shown in Fig. 6(d)-(f), 

we observed that all approaches extract ambient components 

with equal level between the two channels, whereas PCA works 

only for k = 1. 

Fourth, we compare the extraction performance as well as 

the computation time among these PAE approaches. The 

simulation was carried out on a PC with i5-2400 CPU, 8 GB 

RAM, 64-bit windows 7 operating system and 64-bit 

MATLAB 7.11.0. Though MATLAB simulations do not 

provide precise computation time measurement compared to 

the actual implementation, we could still obtain the relative 

computation performance among the PAE approaches. The 

results of computation time averaged across all the  and k 

values are summarized in Table II. It is obvious that the three 

ASE approaches perform better than PCA and Masking on the 

average. But when we compare the computation time among 

APES, AMES, and APEX, we found that AMES is around 20x 

faster than APES, but is still far away from the computation 

time of the existing approaches. The APEX, which estimates 

the ambient phase directly using the phase of the input signals, 

is over 40x faster as compared to AMES and becomes quite 

close to the Masking approach, and hence can be considered as 

a good alternative ASE approach for PAE. Furthermore, in 

order to achieve real-time performance (in frame-based 

processing), the processing time must be less than 4096/44.1 = 

92.88 (ms). It is clear that APEX, together with PCA and 

Masking satisfies this real-time constraint. 

 Fifth, we study the robustness of the proposed ASE 

approaches using experiments with the input signals containing 

unequal ambient magnitudes in the two channels. To quantify 

the violation of the assumption of equal ambient magnitude, we 

introduce an inter-channel variation factor v that denotes the 

range of variation of the ambient magnitude in one channel as 

compared to the other channel. Let us denote the ambient 

magnitude in the two channels as 0 1, .r r  The variation of 

ambient magnitude is expressed as    10 1 010log    dB .v r r   

In the ideal case, we always have 0.v   To allow variation, we 

consider v as a random variable with mean equal to 0, and 

variance as 2 .  In this experiment, we consider two types of 

distributions for the variation, namely, normal distribution and 

uniform distribution, and examine the performance of these 

PAE approaches with respect to different variance of variations, 

i.e.,  2 0, 10 ,    at 0.5,   and k = 2. We run the 

experiment 10 times and illustrate the averaged performance in 

terms of ESR and ICC in Figs. 7 and 8. We observed that as the 

variance of the variation increases, the ESR performance of 

proposed ASE approaches becomes worse, though ICC was not 

affected much. The ASE approaches are more robust to 

ambient magnitude variations under normal distribution 

compared to uniform distribution. Compared to PCA and 

Masking, the proposed approaches are still better with the 

variance of variation up to 10 dB.  Therefore, we conclude that 

the three ASE approaches are in general robust to ambient 

magnitude variations. 

Lastly, subjective tests were carried out to evaluate the 

perceptual performance of these PAE approaches. A total of 17 
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Fig. 5. Comparison of the specific error performance of (a-b) LSR and DSR in the extracted primary components and (c-e) LSR, 

DSR, and ISR in the extracted ambient components using APES, AMES, APEX, PCA, and Masking. 
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subjects (15 males and two females), who were all between 

20-30 years old, participated in the listening tests. None of the 

subjects reported any hearing issues. The tests were conducted 

in a quiet listening room at Nanyang Technological University, 

Singapore. An Audio Technica MTH-A30 headphone was used. 

The stimuli used in this test were synthesized using amplitude 

panned (k = 2) primary components (speech, music, and bee 

sound) and decorrelated ambient components (forest, canteen, 

and waterfall sound) based on two values of primary power 

ratio ( 0.3,  0.7  ) for the duration of 2-4 seconds. Both the 

extraction accuracy and spatial accuracy were examined. The 

testing procedure was based on MUSHRA [71], [72], where a 

more specific anchor (i.e., the mixture) is used instead of the 

low-passed anchor, according to recent revision of MUSHRA 

as discussed in [72]. The MATLAB GUI was modified based 

on the one used in [73]. Subjects were asked to listen to the 

clean reference sound and tested sounds obtained from 

different PAE approaches, and give a score of 0-100 as the 

response, where 0-20, 21-40, 41-60, 61-80, and 81-100 

represent a bad, poor, fair, good, and excellent quality, 

respectively. Finally, we analyzed the subjects’ responses for 

the hidden reference (clean primary or ambient components), 

mixture, and three PAE approaches, namely, Masking [45], 

PCA [22], and APEX. Note that APEX is selected as the 

representative of ASE approaches because APES and AMES 

exhibit very similar extraction results. The box plots of the 

subjective scores of the extraction and spatial accuracy for the 

tested PAE approaches are illustrated in Figs. 9. Note that for 

each PAE approach, we combine the subjective scores of 

different test stimuli and different values of primary power ratio, 

so as to represent the overall performance of these PAE 

approaches. Despite the relatively large variations among the 

subjective scores that are probably due to the different scales 

employed by the subjects and the differences among the stimuli, 

we observe the following trends. On one hand, we observed 

that APES outperforms the other PAE approaches in extracting 

accurate primary components, as shown in Fig. 9(a). In Fig. 

9(b), APEX, though slightly worse off than PCA, still produces 

considerable accuracy in ambient extraction. The good 

perceptual performance of ambient components extracted from 

PCA lies in the very low amount of primary leakage, as shown 

in Fig. 5(c). On the other hand, we found that the spatial 

performance were also affected by the undesired leakage 

signals as compared to the clean reference, as found in the 

mixtures, which preserve the same spatial quality as the 

reference, but were rated lower than the reference. With respect 

to the diffuseness of the ambient components, APEX performs 

the best while PCA performs quite poorly. On this note, we find 

PCA sacrifices on the diffuseness of the extracted ambient 

components for the sake of a better perceptual extraction 

performance. A further analysis of the ANOVA results shows 

that the p-values are extremely small, which reveals that the 

differences among the performance of these PAE approaches 

are significant.  To sum up the subjective evaluation results, the 

proposed ASE approaches yield the best performance in terms 

Table II: Average ESR, ICC, and computation time of PAE 

approaches 

Method APES AMES APEX PCA [22] Masking [45] 

ESRP (dB) -6.73 -6.31 -6.25 -3.02 -1.57 

ESRA (dB) -6.73 -6.31 -6.25 -3.02 -2.77 

ICC of ambient 

components 
0.19 0.22 0.42 1 0.40 

Computation 

time (ms) 
3921.8 217.1 4.8 0.06 5.0 
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Fig. 6. Comparison of the diffuseness of the extracted ambient components in terms of (a)-(c) ICC and (d)-(f) ICLD using APES, 

AMES, APEX, PCA, and Masking. 
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of extraction and spatial accuracy, which is consistent with our 

objective evaluation results. 

 For the purpose of reproducible research, the source code 

and some of the processed tracks used in our experiments can 

be found in [74]. Despite the improved performance of the 

proposed ASE approach as shown in these simulations and 

experiments, there are a few issues need to be carefully 

considered to generalize the results to more complex audio 

signals in digital media. One of them is the time-frequency 

transform. The proposed PAE approaches as well as the 

existing PAE approaches were proposed based on a basic stereo 

signal model. How to obtain the most appropriate 

time-frequency representation so that all the assumptions in this 

signal model are satisfied are extremely important to ensure a 

good PAE performance. Secondly, though only the sparsity 

constraint is used in this paper, other constraints can also be 

employed to improve the performance of ambient spectrum 

estimation, especially for the case with k close to 1. Some of 

these constraints include the correlation of the ambient 

components, the independence between primary and ambient 

components, etc. Thirdly, probabilistic approaches shall be 

developed to model the ambient magnitude variations better. 

Last but not least, extending the PAE approaches from stereo to 

multichannel signals (e.g., 5.1) is also of great practical value. 

One idea is to apply PAE to the downmixed signals [43], 

selected pairs [44] or even every pair of the multichannel 

signals [42]. However, a more comprehensive study on these 

extensions of PAE approaches needs to be carried out. 

VII. CONCLUSIONS 

In this paper, we presented a novel formulation of the PAE 

problem in the time-frequency domain. By taking advantage of 

equal magnitude of ambient component in two channels, the 

PAE problem is reformulated as an ambient spectrum 

estimation problem. The ASE framework can be considered in 

two ways, namely, ambient phase estimation, and ambient 

magnitude estimation. The novel ASE formulation provides a 

promising way to solve PAE in the sense that the optimal 

solution leads to perfect primary and ambient extraction, which 

is unachievable with existing PAE approaches. In this paper, 

ASE is solved based on the sparsity of the primary components, 

resulting in two approaches, APES and AMES. To thoroughly 

evaluate the performance of extraction error, we proposed an 

optimization method to compute the leakage, distortion and 

interference of the extraction error for PAE approaches without 

analytical solutions.  

Based on our experiments, we observed significant 

performance improvement of the proposed approaches over 

existing approaches. The improvement on error reduction is 
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Fig. 7. Comparison of the performance of PAE approaches in the presence of normally distributed variations in the ambient 

magnitudes in two channels (with 0.5,   k = 2): (a) ESRP, (b) ESRA, (c) ICC of ambient components. 

0 2 4 6 8 10
-7

-6

-5

-4

-3

-2

-1

Variance of variation (dB)

E
S

R
P
(d

B
)

(a)

0 2 4 6 8 10
-7

-6

-5

-4

-3

-2

-1

0

Variance of variation (dB)

E
S

R
A
(d

B
)

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Variance of variation (dB)

IC
C

(c)

 

 

True

APES

AMES

APEX

PCA

Masking

 
Fig. 8. Comparison of the performance of PAE approaches in the presence of uniformly distributed variations in the ambient 

magnitudes in two channels (with 0.5,   k = 2): (a) ESRP, (b) ESRA, (c) ICC of ambient components. 
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around 3-6 dB on average and up to 10-20 dB for lower  , 

which is mainly due to the lower residual error from the 

uncorrelated ambient components. Moreover, the ASE 

approaches perform better for mixed signals having heavily 

panned primary components than those having slightly panned 

primary components. In terms of the spatial accuracy, the ASE 

approaches extract more diffuse ambient components. When it 

comes to the computational efficiency of these PAE 

approaches, we found that AMES is an order of magnitude 

faster than APES under the same setting in MATLAB 

simulation, but is still not as efficient as existing approaches. 

For this purpose, we have also derived an approximate solution 

APEX and verified its effectiveness, as well as the efficiency in 

our simulation. Besides the ideal situation where the ambient 

magnitudes are equal in two channels, the robustness of these 

ASE approaches was also examined by introducing statistical 

variations to the ambient magnitudes in the two channels of the 

stereo signal. It was found that the proposed approaches can 

still yield better results with the variance of variations up to 10 

dB. The objective performance of the proposed ASE 

approaches was also validated in our subjective tests. Future 

work includes the study on the use of estimation criteria other 

than the sparsity of the primary component [75], 

time-frequency transform in PAE, and handling more complex 

stereo and multichannel signals using ASE.  

 

Appendix A 

Derivation of the relation between 
0θ  and 

1θ  in (5) 

We show the derivation for the relation between the ambient 

phases in two channels. First, we rewrite 

   1 0 1 0 1 0cos cos sin sin .k k j k    W W θ θ θ θ  Since A  

is real, we have the following relation: 

   1 0 1 0sin . cos sin sin . cos cos ,k k  θ θ θ θ θ θ  which can 

be further rewritten as 

    1

0 1sin sin .k  θ θ θ θ  (29) 

Two solutions arise when solving for 
0 :θ  

 
   1 2

0 0 ,  ,    θ θ θ θ    (30) 

where    1

1 =arcsin sin  and 0.5 ,0.5 .k    θ θ      

Then we have  1

1sin  = sink θ θ  and 

 2 2

1cos  = 1 sin .k θ θ  Based on the other condition that 

ambient magnitude A  is nonnegative, the imagery (or real) 

part of 
1 0kW W  must have the same sign as the imagery (or 

real) part of 
1 0.kX X  Next, we examine the two solutions for 

this condition. We take the first solution 
 1

0θ and rewrite the 

ratio of imagery part of 
1 0kW W to the imagery part of 

1 0kX X as 
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 (31) 

Therefore, the sign of the imagery part of 
1 0kW W  is 

different from the sign of imagery part of 
1 0 ,kX X  resulting 

in negative values for ambient magnitude .A  Therefore, the 

first solution in (30) is inadmissible. Similarly, we take the 

second solution 
 2

0θ and derive the ratio of imagery part of 

1 0kW W to the imagery part of 
1 0kX X as 

 

 

 
 

   

2

0

1 0

1 0

2 2

1 1

Im

Im

cos 1 cos 0.

k

k

k

  





       
 

θ θ

W W

X X

θ θ θ θ

 

 (32) 

Therefore, the sign of the imagery part of 1 0kW W  is the 

same from the sign of imagery part of 1 0 ,kX X  ensuring 

nonnegative values in ambient magnitude .A  Hence, we can 

conclude that based on the second solution, the relation 

between the ambient phases in two channels is 

 1

0 1arcsin sin .k     θ θ θ θ   
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Fig. 9. Subjective performance for (a) the extraction accuracy of primary components, (b) the extraction accuracy of ambient 

components, and (c) diffuseness accuracy of ambient components. 
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