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INTRODUCTION

Large-scale sensor networks have become commonplace in
many applications. To facilitate signal processing in these decen-
ralized networks, iterative distributed algorithms are required.

DISTRIBUTED SIGNAL PROCESSING METHODS

* Distributed consensus [1],
gossip, path averaging, distributed averaging

* Probabilistic inference [2],
max-sum and sum-product message-passing, loopy belief

* Convex optimization,
sub-gradient, primal-dual methods

o Alternating-direction method of multipliers
(ADMM) [3]

o Primal-dual method of multipliers
(PDMM) [4]

PROBLEM STATEMENT

The iterative behaviour of distributed processing algorithms
combined with energy, computational power, and bandwidth
limitations imposed by these networks, place tight constraints on
the transmission capacities of the individual nodes.

The effect of quantisation on the final accuracy and the
convergence rate of some distributed (iterative) algorithms has
been investigated, including ADMM [5], but no such results are
known for PDMM. This paper is a first attempt to investigate the
effect of quantisation on synchronous PDMM.

UNIFORM SUBTRACTIVE-DITHER QUANTISATION

Let Q(0)) =y 4 ng‘") be the uniformly quantised version of
y®), with reproduction distance A,. The error then becomes
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By adding pseudo-random subtractive dither realisations before
quantisation, realisations of ngk) can be made

1. 1L1.d. uniformly distributed;
2. statistically independent in time of one another.

These two properties of the quantisation noise realisations allow
us to write the primal mean squared error (MSE) as
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If we chose
A(k) — ‘)\Q,max‘kA(O%

then, again due to dithering, I [(éf‘;) ] converges at a rate

K - |22 max|?", while E [(,Ek)] converges at a rate |, maxl*".

Using a quantiser with decreasing cell width suggests an
iIncrease in data rate with increasing iterations. This, however, will
almost entirely be compensated by the decrease of information
that needs to be transmitted with increasing iterations.

PRIMAL-DUAL METHOD OF MULTIPLIERS

PDMM solves a separable convex optimisation problem over a
graph ¢ = (V,E), with |V| = n and |E| = d, of the form

min Z fi(xi)
" icV
subject to  A;;x; + Ajix; = ¢, V(i,j) € E,
where x; € R™, x = (x!,...,x))T. The update equations for the
primal x € R*™ and dual u € R® domain can be written as a

linear system of equations, with vector y = (x!, u")"and input u
k—1
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Scalar averaging problem: f;(x;) = %(xi — t;)*, implies Xn; = n.
Assumptions: y(®) = 0 and F is diagonalisable.
With this, the system can be simplified to

k—1
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where A, contains the complex eigenvalues A, having magnitude
strictly less than unity [4]. By defining the error as e(®) = y(¥) — y*
we obtain ) . »
el™ = —VoAS (I —Ay)” " Vou,

which shows that the primal squared error %
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converges at a

SIMULATION RESULTS
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Fig. 1. The primal squared error ¢, for quantised PDMM with decreasing
cell width A(k) with A(O) = 10_1 and n = 10.

CONCLUSION

It was found that, for practical applications, quantisation in
PDMM can be applied with a fixed-rate quantiser, such that
significant data rate reduction can be achieved, without
compromising the rate of convergence.
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