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SIMULATION	RESULTS

Large-scale sensor networks have become commonplace in
many applications. To facilitate signal processing in these decen-
tralized networks, iterative distributed algorithms are required.

The iterative behaviour of distributed processing algorithms
combined with energy, computational power, and bandwidth
limitations imposed by these networks, place tight constraints on
the transmission capacities of the individual nodes.
The effect of quantisation on the final accuracy and the
convergence rate of some distributed (iterative) algorithms has
been investigated, including ADMM [5], but no such results are
known for PDMM. This paper is a first attempt to investigate the
effect of quantisation on synchronous PDMM.

DISTRIBUTED	SIGNAL	PROCESSING	METHODS
• Distributed consensus [1],

gossip, path averaging, distributed averaging
• Probabilistic inference [2],

max-sum and sum-product message-passing, loopy belief
• Convex optimization,

sub-gradient, primal-dual methods
o Alternating-direction method of multipliers 

(ADMM) [3]
o Primal-dual method of multipliers 

(PDMM) [4]

PDMM solves a separable convex optimisation problem over a
graph 𝐺 = (𝑉, 𝐸), with |𝑉| = 𝑛 and |𝐸| = 𝑑, of the form

If we chose
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Fig. 1. The primal squared error 𝜁,- for quantised PDMM with decreasing
cell width Δ(/) with Δ(0) = 1034 and 𝑛 = 10.

where Λ6 contains the complex eigenvalues 𝜆6 having magnitude 
strictly less than unity [4]. By defining the error as 𝐞(𝒌) = 𝐲(/) − 𝐲∗
we obtain

Let 𝑄(𝒚? 𝒌 ) = 𝒚? 𝒌 + 𝐧B
(/) be the uniformly quantised version of 

𝒚? 𝒌 , with reproduction distance Δ(/). The error then becomes

PROBLEM	STATEMENT

By adding pseudo-random subtractive dither realisations before 
quantisation, realisations of 𝐧B

(/) can be made
1. i.i.d. uniformly distributed;
2. statistically independent in time of one another.

It was found that, for practical applications, quantisation in 
PDMM can be applied with a fixed-rate quantiser, such that 
significant data rate reduction can be achieved, without 
compromising the rate of convergence.

CONCLUSION
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Fig. 1. The SE ⇣̃
x

for quantised PDMM with and without subtractive

dithering with decreasing cell width �(k) with �(0) = 10�1
.

ABSTRACT

convergence.

Index Terms— PDMM, quantisation, subtractive dithering.

1. SIMULATION RESULTS

Fig. 3 shows the required data rate for quantised PDMM for three

different values �(0) when difference messages are transmitted. The

lines represent n�1 P
i

H(v̂
i

(k)), the mean over ten nodes of the up-

per bound on the data rate from (??). Based on (??), (??) and Fig.

3, it can be noted that a smaller �(0) requires a higher data rate,

since there are more quantisation cells to represent with a smaller

cell width. Furthermore, it can be seen that during the first iterations

the data rate is relatively high. This corresponds with the effect of a

very fast decrease in the SE during the first iterations, which requires

more information to be transmitted. Lastly, the near horizontal lines

for the later iterations indicate that a fixed-rate quantiser will be suf-

ficient for practical applications that stop transmitting data after the

required precision has been achieved.
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Fig. 2. The SE ⇣̃
x

for quantised PDMM with and without subtractive

dithering with decreasing cell width �(k) with �(0) = 5 · 10�1
.
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Fig. 3. The mean required data rate to quantise v
(k)
i

for a variable

cell width for three different values of �(0).
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subject to Aijxi +Ajixj = cij , 8(i, j) 2 E,

where 𝐱D ∈ ℝGH, 𝐱 = 𝐱4I, … , 𝐱GI I. The update equations for the
primal 𝐱 ∈ ℝKGH and dual 𝝁 ∈ ℝM domain can be written as a
linear system of equations, with vector 𝐲 = 𝐱I, 𝝁I Iand input 𝐮

Scalar averaging problem: 𝑓D 𝑥D = 4
6
𝑥D − 𝑡D 6	, implies Σ𝑛D = 𝑛. 

Assumptions: 𝒚(0) = 𝟎 and 𝐹 is diagonalisable.

y(k) = V2
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With this, the system can be simplified to

y(k) = F ky(0) +
k�1X

i=0

F iu.

which shows that the primal squared error 𝜁-
/ converges at a 

rate |𝜆6,VWX|6/. 

e(k) = �V2⇤
k
2 (I � ⇤2)

�1 V +
2 u,

ẽ(k) = e(k) +
k�1X

i=0

F k�in(i)
q .

These two properties of the quantisation noise realisations allow 
us to write the primal mean squared error (MSE) as

E
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.
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,

then, again due to dithering, 𝔼 𝜁B,-
/ 	 converges at a rate

k ⋅ |𝜆6,VWX|6/, while 𝔼 𝜁-
/ 	 converges at a rate |𝜆6,VWX|6/.

Using a quantiser with decreasing cell width suggests an 
increase in data rate with increasing iterations. This, however, will 
almost entirely be compensated by the decrease of information
that needs to be transmitted with increasing iterations.


