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Method Results

Motivation

We explore the redundancy in convolutional neural network,
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1: add a softmax layer to T distillation algorithm to Given the same normalized accuracy, the more simpler the task is, i.e.,
e SNLLY BN NN o A - _derive a simplified model. the less the class number becomes, the more redundancy in the
3: use T to capture soft targets P7.(€) from each sample in
D) The new model could teacher model could be reduced for MNIST and CIFAR10.
4: set the architecture of the student model S(0)

5: train the student model with soft targets P7(6) and SatiSfy the constraints of
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Figl. Sample task-specified scenarios on front-end systems




