

Gait Analysis using a Single Depth Camera

Minxiang Ye, Cheng Yang, Vladimir Stankovic, Lina Stankovic, Andrew Kerr²

Electronic and Electrical Engineering Department ² Biomedical Engineering Department <u>vladimir.stankovic@strath.ac.uk</u>

GlobalSIP-2015, Orlando, FL Dec. 14th 2015

Motivation

- Typical rehabilitation programs periodically assess recovery of stroke patients based on their walking patterns
- Optical multi-camera motion capture systems, such as VICON, are accurate, but expensive, require operational expertise and large dedicated labs
- Shift towards tele-rehabilitation: Provide rehabilitation services from home or local clinics using low-complexity, portable, and relatively cheap hardware
- Can we develop a system that matches VICON (performance-wise), but is cheaper and suitable for home use?

Optical Motion Capture for Rehabilitation Assessment

VICON: industrial standard, 3D marker tracking via 12 infrared cameras Expensive, not-portable, requires large rooms, expertise to handle

http://accad.osu.edu/~aprice/courses /BVE/joy.html

- Previous single- and stereo- camera solutions require manual processing, operation expertise, limited to specific colors of clothes [Ugbolue-2013, Leu-2011, Liao-2010, Li-2011, Yang-2013, 2014]
- Using Microsoft Kinect camera with skeleton tracking is not accurate enough for clinical use [Jun, Nguyen-2014, Sarkar-2015]

Proposed System: Main Features

- Single camera (with infrared + depth outputs)
 - > Implemented using Microsoft Kinect v2
- Tracking in 3D in real time of retro-reflective markers attached to a subject's joints
- Kinematics analysis in near real time based on the previous
 3D marker trajectories
- User-friendly interface iteratively designed using clinicians' feedback
- Interactive tele-rehabilitation service via cloud
- Portable, cheap, simple to operate

Application Tasks

• Straight-line walking exercise from left to right and back

6m straight walking exercise

- Track positions of all 12 markers attached to joints
- Calculate and present clinical parameters using 3D trajectories

Pre-processing

- Scene-calibration
 - > Capture necessary dimensions to form the geometry of the scene
 - > Define start and end points of walking line

Denoising of depth images

Pre-processing: Modelling

- Construct subject model Physically measure the subject standing at modeling location
- Sagittal subject model is then split into:
 - > upper body model
 - > limb model
 - > foot model

Marker Detection

	av 24 Million - Anna Cardina anna		Label	Name	Count
			0	Invalid	0
			1	Left Shoulder	0
	A 42		2	Right Shoulder	1
			3	Left Anterior Superior Iliac Spine	0
			4	Right Anterior Superior Iliac Spine	1
			5	Left Posterior Superior Iliac Spine	0
	6 8 4		6	Right Posterior Superior Iliac Spine	1
			7	Left Hip	0
			8	Right Hip	1
	- 10		9	Left Fema	0
	• 12 • 14		10	Right Fema	1
			11	Left Knee	0
	416		12	Right Knee	1
	• 18 _{6 19} • 17		13	Left Tibial	0
			14	Right Tibial	1
			15	Left Ankle	0
			16	Right Ankle	1
			17	Left Toe	1
nfrared Amplification: 1			18	Right Toe	1
Infrared Gamma: 0.35	4	Apply	19	Left Heel	1
	- П		20	Right Heel	1
Frame Index 83	Previous	Save			

- Blob detection through image binarization
- Contour finder to identify all valid contours [Suzuki et al.]
- Ellipse and minimum area rectangle fitter to extract blob information [Fitzgibbon et al., Toussaint]
- Proposed kernel cluster filter identify (not label) all markers in 2D plane

Marker Mapping in 3D plane

- Task: Map markers from image space to camera space
- Retro-reflective markers: depth image value zero!
- Idea: Use weighted average from depth-map histogram statistics with appropriate heuristic adjustments in case of occlusion

Marker Labelling

• Use the constructed subject model to label markers

Kinematics Analysis

- Based on 3D marker trajectories:
 - Detect gait events: Heel strike, Toe off (step, stride length and stance, swing duration)

Step and stride length

Calculate relevant angles between markers and track the changes of these angles over time

Gait Event Detection

Find inflection points and local peaks ulletHeel Horizontal Axis Trajectory \succ Examine stable values ψ using window 800 Heel Horizontal Axis Value matching between inflection points -600 Ψ_{2} 400 Horizontal Axis (mm) 200 0 Iteratively search the region between -200 \succ -400 inflection points and local min/max -600 -800 200 100 300 400 500 Heel Vertical Axis Trajectory Frame 750 Step and stride measurement η_0 η₁ 700 η_3 Vertical Axis (mm) 009 220 220 Heel Horizontal 500 ×ρ Axis Value 450^L 100 200 300 400 500 Frame

Stance and swing phase measurement

Visualisation

- Interactive multi-view scene manager
- Automatic reconstruction process or manual play-back
- Simple sharing of authorized content across platforms

Experimental Results: Angle

- 40 experiments with 6 different subjects (male and female)
- Close agreement with VICON results

Experimental Results: Gait Events

• Close agreement with VICON results

ERROR	Step	Stance	Stride	Swing
Mean [%]	1.05	1.82	1.17	1.10
Std [%]	5.33	5.83	4.76	4.37

Averaged over 40 experiments

Mobile Multimedia System

 Dispatch encrypted patient personal information and diagnostics reports to a cloud server for authorized direct inquiry or data mining to evaluate patient's rehabilitation conditions

Conclusions

- Portable, cheap and accurate solution
- Easy to operate with user-friendly interface
- Tested for accuracy and ease of use in UK hospitals with stroke patients

Future Work

- Improved tracking and identification via adaptive blob thresholding [paper submitted]
- Better marker design
- Improve marker trajectory accuracy and stability via texture clustering (use point clouds in levelled region with centroid reconstruction to solve partial occlusion)