Orthogonal Precoding for Sidelobe Suppression in DFT-Based Systems Using Block Reflectors

Orthogonal frequency-division multiplexing (OFDM) has some important shortcomings.

Over a single symbol, the complex-baseband transmitted signal y(t) is

$$y(t) = \sum_{i=1}^{M} s_i \exp(j2\pi k_i f_s t)$$

where

 s_i is the amplitude on the *i*th subcarrier,

 k_i is the index of the *i*th subcarrier and

 $f_{\mathbf{s}}$ is the subcarrier spacing.

The symbol at t = 0 extends from $-T_g$ (or $-T_{cp}$) to $T_s = 1/f_s$.

System model

Orthogonal precoding

Orthogonal precoding is implemented by rotating the individual constellations in n dimensions.

• Let $\overline{\mathbf{x}}$ be an *M*-dimensional vector containing the QAM data.

• Zero pad $\overline{\mathbf{x}}$ with *R* zeros to make an *N*-dimensional vector

$$\mathbf{x} = \begin{pmatrix} \mathbf{0}_R \ \overline{\mathbf{x}} \end{pmatrix}$$
.

- Set $\mathbf{s} = \mathbf{Q}\mathbf{x}$ for some unitary matrix \mathbf{Q} —this is the *orthogonal* precoding.
- Equivalently, $\mathbf{s} = \overline{\mathbf{Q}} \overline{\mathbf{x}}$ where $\overline{\mathbf{Q}}$ has *M* orthogonal columns.
- The elements of **s** now represent the subcarrier amplitudes that are transmitted like standard OFDM.

Vaughan Clarkson

P.O. Box 920, Samford Village, Qld., 4520, AUSTRALIA, v.clarkson@ieee.org

Power spectral density

The spectrum of an individual OP-OFDM symbol is

$$Y(f) = \sum_{i=1}^{M} a_i^*(f) s_i$$

where

 $a_i(f) = T \exp \left[-j\pi (T_s - T_{cp})(f - k_i f_s) \right] \operatorname{sinc} \left[\pi (T_s + T_{cp})(f - k_i f_s) \right].$

- With the functions $a_i(f)$, i = 1, ..., M, grouped as a column vector $\mathbf{a}(f)$, we have $Y(f) = \mathbf{a}^H(f)\mathbf{s}$.
- With independent uniform QAM data, the *power spectral density* of OP-OFDM is We can use **Q** to shape the PSD!

$$G_Y(f) = \frac{\eta}{T} [\overline{\mathbf{Q}}^H \mathbf{a}(f) \|^2$$

where η is the power of each symbol in the source stream.

Choosing Q

We'll review two methods of choosing **Q** for sidelobe suppression.

1. The method of van de Beek:

- (a) Choose *R* out-of-band frequencies, f_{γ} , $\gamma = 1, ..., R$, at which $G_Y(f_r) = 0$.
- Then each $\mathbf{a}(f_{\mathbf{r}})$ should be in the null space of $\overline{\mathbf{Q}}$.
- (b) Construct a matrix $C_{vdB} = (a(f_1), \dots, a(f_R))$.
- (c) Perform a singular value decomposition (SVD) $\mathbf{C}_{\mathrm{vdB}} = \mathbf{U}\Sigma\mathbf{V}^{H}$. • Set $\mathbf{Q} = \mathbf{U}$.
- 2. The method of Ma *et al.*:
 - (a) Choose a set ϕ of out-of-band frequencies on which to minimise $\sum G_Y(f)$.
 - (b) Construct a matrix C_{Ma} whose columns are $a(f), f \in \phi$. \Rightarrow Choose $\overline{\mathbf{Q}}$ to minimise $\|\overline{\mathbf{Q}}^H \mathbf{C}_{Ma}\|_F^2$.
 - (c) Perform an SVD $C_{Ma} = U \Sigma V^{H}$. • Set $\mathbf{Q} = \mathbf{U}$.

Suppression performance

E-UTRA/LTE parameters, 600 subcarriers, 8 sacrificed.

Householder reflection

Unitary transformation needn't be computationally expensive when you don't care what happens outside a low-dimensional subspace.

• If $y \neq z$ are unit basis vectors for two subspaces then the *Householder matrix* is

 $\mathbf{H} = \mathbf{I} - \mathbf{g}\mathbf{g}^H$ where $\mathbf{g} = \sqrt{2} \frac{\mathbf{y} - \mathbf{z}}{\|\mathbf{y} - \mathbf{z}\|}$

- Observe that **H** is unitary, Hy = z and Hz = y.
- Computing Hx is cheap since $Hx = x g(g^Hx) \Leftrightarrow all$ vector-vector operations and so O(N) rather than $O(N^2)$.
- Since $\mathbf{H}^2 = \mathbf{I}$, this unitary transformation is the *Householder* reflection.

Block reflector

Householder reflection can be generalised to higher-dimensional subspaces in a number of different ways.

- Examples: the *WY* representation, the *basis-kernel* representation and successive Householder reflection.
- Suppose **Y** and **Z** are orthonormal basis matrices for two *R*-dimensional subspaces.
- Take the SVD of $\mathbf{Y}^H \mathbf{Z} = \Theta \mathbf{D} \Phi^H$.
- The *block reflector* is

where $\mathbf{G} = (\mathbf{Y}\Theta - \mathbf{Z}\Phi)(\mathbf{I} - \mathbf{D})^{-1/2}$. $\mathbf{H} = \mathbf{I} - \mathbf{G}\mathbf{G}^H$

- Again, **H** is unitary, $\mathbf{H}\mathbf{Y}\Theta = \mathbf{Z}\Phi$ and $\mathbf{H}\mathbf{Z}\Phi = \mathbf{Y}\Theta$.
- Again, **Hx** is cheap to compute since $\mathbf{Hx} = \mathbf{x} \mathbf{G}(\mathbf{G}^H\mathbf{x})$ and **G** is an $N \times R$ matrix $\Rightarrow O(NR)$ rather than $O(N^2)$.

Fast orthogonal precoding

The procedure for transmission and reception involves first computing the **G** matrix of the block reflector.

- Using either van de Beek's or Ma *et al.*'s method, obtain the U matrix from the SVD.
- Take the first R columns of U and assign it to Y.
- Choose which *R* subcarriers to sacrifice and assign those columns of the identity matrix to Z.

• Follow the recipe to create **G** from **Y** and $\mathbf{Z} \Rightarrow \mathbf{Q} = \mathbf{H}$.

To transmit:

• Set $\mathbf{s} = \mathbf{H}\mathbf{x} = \mathbf{x} - \mathbf{G}(\mathbf{G}^H\mathbf{x})$.

To receive:

• Set $\hat{\mathbf{x}} = \mathbf{H}\hat{\mathbf{s}} = \hat{\mathbf{s}} - \mathbf{G}(\mathbf{G}^H\hat{\mathbf{s}})$.

 10^{-4}

....

Suppression performance

E-UTRA/LTE parameters, 660 subcarriers (55 PRB), 8 sacrificed.

PAPR performance

Standard SC-FDMA Precoded SC-FDMA: van de Beek refl Ma *et al.* refl. Ma *et al.* opt. Standard OFDM Precoded OFDM: – van de Beek refl. Ma *et al.* refl.

Experimental results: SDR

 $PAPR_0$ (dB)

Why V OP-OFDM?

- Steep sidelobe suppression.
- Acceptable computational cost: O(NR).
- Negligible sacrifice of subcarriers: R = 8.
- No ISI, no BER sacrifice.
 - Great for 256-QAM operation.
 - Great for TDD operation.
- Compatible with MIMO, SC-FDMA (DFT-s-OFDM), CP, etc.