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Background

To estimate the time delay and Doppler stretch with wideband
signals

Advantages of wideband waveform: high range resolution and
low interception probability

Differences in modeling echoes between wideband and
narrowband signals:

narrowband signals: target=point scatterer, Doppler effect=Doppler
shift
wideband signals: target=distributed target, Doppler effect=Doppler
stretch
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Background

The Cramer-Rao Lower Bound (CRLB) is a lower bound for the
variance of any unbiased estimator.

The CRLB can be used to predict the performance of the
maximum likelihood estimator (MLE) and optimize waveforms.

The most studies on the CRLB of the joint time delay and
Doppler estimation for wideband signals either consider the
target as a point scatterer or deal with some specific waveform

In this paper, we consider more general wideband sensing
systems and derive the CRLB for an arbitrary wideband signal
along with an extended target model and discuss the influences
of some waveform parameters on the CRLB.
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Signal Model

The received signal is

y(t) =

P∑
p=1

xps(γ(t − τp)) + w(t), (1)

where s(t) is the transmitted signal with a duration T,
τp = τ + (p− 1)∆ is the time delay of the pth scatterer, ∆ is the
sample interval, γ is the Doppler stretch and xp is the scattering
coefficient.

The noise w(t) is assumed as a bandlimited complex Gaussian
random process, where Re {w(t)} and Im {w(t)} are mutually
independent with a bandwidth 1/(2∆) and power spectral
densityN0/2.
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Signal Model

Sample the echoes at the rate of 1/∆, and write the signal in the
form of matrices

y = Φx + w, (2)

where y = [y0, ..., yN−1]
T ∈ CN×1 with yn = y(n∆), Φ ∈ CN×P with

Φij = s(γ((i− 1)∆− τj)), and x = [x1, ..., xP]
T ∈ RP×1,

w = [w0, ...,wN−1]
T ∈ CN×1 is distributed as CN(0, σ2I), where

wn = w(n∆) and σ2∆ = N0.

The parameters under estimation are θ =
[
τ, γ, aT ,bT

]T , where
a = Re{x} and b = Im{x}.
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Signal Model

We assume that s(t) has derivatives of all orders
s(m)(t) = dms/dtm(t),m ∈ N.

Denote

M(k)
i =

+∞∫
−∞

∣∣∣s(k)(t)
∣∣∣2 tidt, i = 0, 1, 2, k ∈ N

M̃(k)
i = Im

{∫ +∞

−∞
tis∗(k)(t)s(k+1)(t)dt

}
, i = 0, 1, 2, k ∈ N

The parameters M(0)
0 , B̄ =

(
M(1)

0 /M(0)
0

) 1
2

and T̄ =
(

M(1)
2 /M(1)

0

) 1
2

are the energy, effective bandwidth and effective duration of the
transmitted signal, respectively.
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Derivations of the CRLB

The covariance matrix of any unbiased estimator θ̂ satisfies

Cθ̂ , E
{

(θ̂ − θ) · (θ̂ − θ)T
}
≥ FIM−1 (3)

where FIM ∈ R(2P+2)×(2P+2) is the Fisher information matrix with

FIMij =
2
σ2 Re

{
∂µH(θ)

∂θi

∂µ(θ)

∂θj

}
where µ(θ) = Φx. After some calculations, the CRLBs of τ and γ are
given as

var(τ) ≥ CRLBτ = a22/
(
a11a22 − a2

12

)
(4)

var(γ) ≥ CRLBγ = a11/
(
a11a22 − a2

12

)
(5)

where aij = Fij − Re
{

FH
3iF
−1
33 F3j

}
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Derivations of the CRLB

F11 =
P∑

i=1

P∑
j=1

2x∗i xjγ

N0

+∞∫
−∞

s∗(1)(t)s(1)(t + γ(τi − τj))dt

F12 = −
P∑

i=1

P∑
j=1

Re

2x∗i xj

γN0

+∞∫
−∞

ts∗(1)(t + γ(τj − τi))s(1)(t)dt


F22 =

P∑
i=1

P∑
j=1

2x∗i xj

γ3N0

+∞∫
−∞

t(t + γ(τi − τj))s∗(1)(t)s(1)(t + γ(τi − τj))dt

[F31]i1 = −
P∑

j=1

2xj

N0

+∞∫
−∞

s∗(t)s(1)(t + γ(τi − τj))dt

[F32]i1 =

P∑
j=1

2xj

γ2N0

+∞∫
−∞

ts∗(t + γ(τj − τi))s(1)(t)dt

[F33]ij =
2
γN0

+∞∫
−∞

s∗(t)s(t + γ(τi − τj))dt
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Derivations of the CRLB

Furthermore, we can express the Fisher information matrix in the
form of series:

Fij = lim
K→∞

F(K)
ij = lim

K→∞
F(K)

1ij +
√
−1F(K)

2ij (6)

F3i = lim
K→+∞

F(K)
3i = lim

K→+∞
F(K)

13i +
√
−1F(K)

23i (7)

where F(K)
lij and F(K)

lij are given below, Γ(k) =
[
Γ
(k)
ij

]
∈ RP×P,

1 ≤ i, j ≤ P, k ∈ N with Γ
(k)
ij = (τi − τj)

k.

F(K)
111 =

∑
0≤2k≤K

(−1)k2γ2k+1

(2k)!N0
M(k+1)

0 xHΓ(2k)x

F(K)
211 =

∑
0≤2k+1≤K

(−1)k2γ2k+2

(2k + 1)!N0
M̃(k+1)

0 xHΓ(2k+1)x

F(K)
112 =

∑
0≤2k≤K

(−1)k+12γ2k−1

(2k)!N0
M(k+1)

1 xHΓ(2k)x

F(K)
212 =

∑
0≤2k+1≤K

(−1)k+12γ2k

(2k + 1)!N0
M̃(k+1)

1 xHΓ(2k+1)x
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Derivations of the CRLB

F(K)
122 =

∑
1≤2k≤K

(−1)k(k − 1)γ2k−3

(2k − 1)!N0
M(k)

0 xHΓ(2k)x +
∑

0≤2k≤K

(−1)k2γ2k−3

(2k)!N0
M(k+1)

2 xHΓ(2k)x

F(K)
222 =

∑
0≤2k+1≤K

(−1)k2k2γ2k−2

(2k + 1)!N0
M̃(k)

0 xHΓ(2k+1)x +
∑

0≤2k+1≤K

(−1)k2γ2k−2

(2k + 1)!N0
M̃(k+1)

2 xHΓ(2k+1)x

F(K)
131 =

∑
0≤2k−1≤K

(−1)k+12γ2k−1

(2k − 1)!N0
M(k)

0 Γ(2k−1)x,F(K)
231 =

∑
0≤2k≤K

(−1)k+12γ2k

(2k)!N0
M̃(k)

0 Γ(2k)x

F(K)
132 =

∑
0≤2k≤K

(−1)k(2k − 1)γ2k−2

(2k)!N0
M(k)

0 Γ(2k)x +
∑

0≤2k+1≤K

(−1)k+12γ2k−1

(2k + 1)!N0
M(k+1)

1 Γ(2k+1)x

F(K)
232 =

∑
0≤2k+1≤K

(−1)k2kγ2k−1

(2k + 1)!N0
M̃(k)

0 Γ(2k+1)x +
∑

0≤2k≤K

(−1)k2γ2k−2

(2k)!N0
M̃(k)

1 Γ(2k)x

F(K)
133 =

∑
0≤2k≤K

(−1)k2γ2k−1

(2k)!N0
M(k)

0 Γ(2k),F(K)
233 =

∑
0≤2k+1≤K

(−1)k2γ2k

(2k + 1)!N0
M̃(k)

0 Γ(2k+1)
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Discussions on waveform parameters

CRLBτ = O

(
1

M(0)
0 B̄2

)
,CRLBγ = O

(
1

M(0)
0 B̄2T̄2

)

There exists a positive correlation between the estimation
accuracy of the time delay and the effective bandwidth

The estimation accuracy of the Doppler stretch is positive
correlated to the effective time-bandwidth product
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Wide-band ambiguity function estimators and CRLBs

The wide-band ambiguity function (WBAF) is defined by

Wsrsd (τ, γ) =
√
γ

+∞∫
−∞

sr(t)s∗d(γ(t − τ))dt

where sr and sd are the received and reference signals,
respectively.

Two estimators are used to compare with the CRLBs:
1) Oracle matched filter [τ̂∗, γ̂∗] = arg max

τ,γ
Wsrsd with

sd =
P∑

p=1
xps(γ(t − τp))

2) WBAF estimator [τ̂ , γ̂] = arg max
τ,γ

Wsrsd with sd = s(γ(t − τp))

The source signal is chosen as the chirp signal.
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Wide-band ambiguity function estimators and CRLBs
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Figure: The CRLBs and MSEs of time delay
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Wide-band ambiguity function estimators and CRLBs
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Effective bandwidth and the CRLBs of time delay
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Figure: The influences of effective bandwidth on the CRLBs of time delay
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Effective time-bandwidth product and the CRLB of
Doppler stretch
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Figure: The impact of effective time-bandwidth product on the CRLB of
Doppler stretch. T̄ = (3.7 ± 0.2) × 10−5s and is almost unchanged.
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Effective time-bandwidth product and the CRLB of
Doppler stretch
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Figure: The impact of effective time-bandwidth product on the CRLB of
Doppler stretch. B̄T̄ ≡ 35.3786.
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Conclusion

The CRLBs of time delay and Doppler stretch for an extended
target are derived.

The CRLBs of time delay and Doppler stretch are negatively
correlated to the effective bandwidth and the effective
time-bandwidth product of the transmitted signal, respectively.

Compared with a point scatterer, an extended target consisting of
multiple scatterers leads to higher CRLBs under the same SNR
level.



26/26

Thanks

Thanks!
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