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Introduction 
 
What is Phase Retrieval? 
 
The aim is to recover a signal-of-interest using the 
magnitude-square or intensity observations of its linear 
transformation. 
 
Mathematically, the problem is to find (more 
precisely, up to a global phase  because  is also 
a solution) from  phaseless observations : 
 

 
 
where  are known sampling vectors,  are 
additive zero-mean noise terms and . 
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Why Phase Retrieval is Important? 
 
Many real-world problems can be boiled down to phase 
retrieval: 
 
 Astronomy 
 Computational Biology 
 Crystallography 
 Digital Communications 
 Electron Microscopy 
 Neutron Radiography 
 Optical Imaging 
 
Note that in some applications,  is the discrete Fourier 
transform vector, although it can be generalized to any 
linear mappings. 
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How to Perform Phase Retrieval? 
 
Adopting least squares (LS) criterion,  is determined from: 
 

 

 
It is a nonconvex optimization problem where minimizing a 
multivariate fourth-order polynomial is required, which is 
generally NP-hard. 
 
Conventional methods include 
 
 Gerchberg-Saxton algorithm (GSA): solve the nonconvex 

problem via alternating projection. 
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 Wirtinger flow (WF): solve the nonconvex problem via 
gradient descent. 

 
 PhaseLift and PhaseCut: relax the nonconvex problem to 

a convex program. 
 
However, these methods have the drawbacks of requiring: 
 
 Lengthy observations or large . 

 
 Large number of iterations. 

 
 High computational complexity. 
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Coordinate Descent for Phase Retrieval  
 
The key idea is to apply coordinate descent (CD): a single 
unknown is solved at each iteration while all other variables 
are kept fixed, which results in minimizing a univariate 
quartic polynomial only. 
 
Using real-valued representation, the LS minimization is: 
 

 

where 
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CD is an iterative procedure that successively minimizes the 
objective function along coordinate directions.  
 
Denote the result of the th iteration as .  
 
At th iteration, we minimize  w.r.t. th ( ) 
variable while keeping the remaining   fixed.  
 
This is equivalent to performing 1-D search along th 
coordinate: 
 

 

 
where  is the unit vector with the th entry being one and 
all other entries being zero.  
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Then  is updated by 
 

 
 
which implies that only the th component is adjusted: 
 

 
 
while all other components remain unchanged.  
 
Since  is known,  is a univariate function of .  
 
Thus, finding  is 1-D minimization problem.  
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High-Level Algorithm 
 
The proposed CD is outlined in Algorithm 1: 
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Selection rules for the coordinate index  include: 
 
 Cyclic rule (CCD):  takes value cyclically from 

, and thus one cycle corresponds to  
iterations. 

 
 Random rule (RCD):  is randomly selected from 

 with equal probability. 
 
 Greedy rule (GCD):  is chosen as 
 

 

 
i.e., coordinate with largest absolute value of the partial 
derivative, and full gradient at each iteration is needed. 
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Closed-form solution for  is derived as follows. 
 
Let 

 

   
where the th term is 
 

 
  
Expanding  results in: 
 

 
  
where ,  and  are coefficients of univariate quadratic 
polynomial.  
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Further manipulation yields: 
 
 

 

  
  

 

 
because 
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Since  is quadratic,  is a univariate quartic 
polynomial of : 
 

 
 
where  
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Recall 

 

We have: 
 

 
  
where 

 

  
Hence  is easily solved with closed-form expression from: 
 

 
  
whose complexity is merely .  
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Computational Complexity  
 
  per iteration for CCD and RCD; note that one cycle 

corresponds to  iterations. 
 

  per iteration for GCD. 
 
Convergence Analysis 
 
 Three CD algorithms converge to a stationary point 

regardless of the initial value. 
 

 RCD locally converges to the global minimum and 
achieves exact retrieval at geometric rate with high 
probability provided that  is large enough. 
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Extension to Sparse Signals 
 
If  is sparse, then the real‐valued  is also sparse. 
 
The sparse signal retrieval problem is formulated as: 
 

 

 
That is, the number of nonzero elements in  is at most . 
 
Recall in linear compressed sensing, the -norm is 
approximated by the -norm so that the resultant problem 
becomes a convex optimization problem. 
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Widely-used methods include the least absolute shrinkage 
and selection operator (LASSO): 
 

 
 
basis pursuit (BP):  
 

 
 
and -regularization: 
 

 
 
Adopting ‐regularization, sparse phase retrieval is  
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High-Level Algorithm 
 
The CD for sparse signals is outlined in Algorithm 2: 
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As there is no gradient for , GCD is not implementable 
because it requires gradient for index selection. 
 
We only present the CCD and RCD for the ‐regularization, 
and they are referred to as ‐CCD and ‐RCD. 
 
The steps of the CD for solving  are similar to those in 
Algorithm 1 except that an ‐norm term is added to the 
scaler minimization problem of: 
 

 

 
Ignoring the terms independent to  yields 
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Making a change of variable  and ignoring the 
irrelevant components, we obtain an equivalent scalar 
minimization problem: 
 

 

 
where 
 

 

 
Although  is non‐smooth due to the absolute term, there 
is a closed‐form solution.  
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We study  in two intervals:  and .  
 
Define  containing the stationary points of  in the 
interval , i.e.,  is the set of real positive roots of: 
 

 
 

 can be empty, or has at most 3 positive elements.  
 
Similarly,  is the set that contains the stationary points of 

 in , i.e., real negative roots of 
 

 
 
Again,  can be empty, or has at most 3 entries.  
 



H. C. So                                                                                        Page 23                                                             

The minimizer of  in  and  must be an 
element of  and , respectively. 
 
Minimizer in  must also include the boundary, i.e., 0.  
 
Hence 
 

 

 
We only need to evaluate  with at most 7 elements.  
 
The coordinate of ‐regularized CD is updated as: 
 

 
 
If , then , making the solution sparse. 



H. C. So                                                                                        Page 24                                                             

Application to Blind Equalization 
 
Consider a communication system with discrete‐time 
complex baseband signal model: 
 

 
 
where 
 

 is received signal 
 is transmitted data symbol 
 is channel impulse response 
 is additive white noise 

 
Blind equalization aims at recovering  without knowing 

.  
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Define the equalizer with  coefficients: 
 

 
and  

 
 
The equalizer output is 
 

 

 
As many modulated signals such as PSK, FM, and PM, are of 
constant modulus, we apply the constant modulus criterion: 
 

 

 

where  is the known dispersion constant. 
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Numerical Examples 
 
All methods use the same initial value obtained from the 
spectral method.  
 
The measurement vectors  satisfy a complex standard 
i.i.d. Gaussian distribution. 
 

Convergence Behavior and Statistical Performance 
 

 and noise  are i.i.d. Gaussian while  and .  
 
Note that it is fair to compare  iterations (one cycle) for 
the CD with one iteration of WF because the computational 
complexity of the CCD and RCD per cycle is the same as the 
WF per iteration: 
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 64 128 256 512 1024 
CCD      
WF      

Runtime Comparison (in sec.) 
 
Reduction of the objective function normalized w.r.t. : 
 

 

 
SNR is defined as 
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Relative recovery error: 
 

 

 
where  is extracted from  such that  is 
minimum, which reflects the convergence speed. 
 
Successful recovery means: 
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Figure 1: Normalized reduction of objective function versus 

number of iterations/cycles at SNR = 20 dB 
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Figure 2: Relative recovery error versus number of 

iterations/cycles at SNR = 20 dB 
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Figure 3: Empirical probability of success versus number of 

noise-free measurements 
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Figure 4: NMSE of recovered signal versus SNR 
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Sparse Phase Retrieval Performance 
 

 is used for ‐CCD and ‐RCD. 
 
Support of sparse signal is randomly selected from  
where , while  and . 
 
The real and imaginary parts of the nonzero coefficients of  
are drawn as random uniform variables in the range 

.  
 
Comparison with WF and sparse GSA using hard‐
thresholding is included. 
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Figure 5: Magnitudes of recovered signals 
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Figure 6: Probability of success versus number of noise-free 

measurements for sparse phase retrieval 
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Blind Equalization Performance 
 
QPSK:  
 
FIR communication channel:  
 
Equalization quality is measured using the quantified inter‐
symbol interference (ISI): 
 

 

 
Comparison with WF and conventional super‐exponential 
algorithm (SEA) is included. 
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Figure 7: Scatter plots of constellations of received signal 

and equalizer outputs 
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Figure 8: ISI versus number of iterations/cycles 
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Concluding Remarks 
 
 Making use of CD where only one variable is updated at 

each iteration, multivariate fourth-order polynomial 
minimization of phase retrieval is converted to univariate 
fourth-order polynomial minimization. 
 

 Cyclic, random, and greedy CD selection rules have been 
considered. All converge faster than WF and GCD has the 
fastest convergence at the expense of higher 
computational requirement. 

 
 CCD and RCD has been extended to phase retrieval of 

sparse signals. 
 
 Application to blind equalization is demonstrated. 



H. C. So                                                                                        Page 40                                                             

List of References 
 
[1]  R. Gerchberg and W. Saxton, “A practical algorithm for 

the determination of phase from image and diffraction 
plane pictures,” Optik, vol. 35, pp. 237–246, 1972. 

[2] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase 
retrieval via Wirtinger flow: Theory and algorithms,” 
IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1985–2007, 
Apr. 2015. 

[3] E. J. Candès, T. Strohmer, and V. Voroninski, 
“PhaseLift: Exact and stable signal recovery from 
magnitude measurements via convex programming,” 
Commun. Pure Appl. Math., vol. 66, no. 8, pp. 1241–
1274, 2013. 

[4] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase 
recovery, MaxCut and complex semidefinite 



H. C. So                                                                                        Page 41                                                             

programming,” Math. Program., Ser. A, vol. 149, no. 1, 
pp. 47–81, Feb. 2015. 

[5] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. 
Miao and M. Segev, “Phase retrieval with application to 
optical imaging,” IEEE Signal Process. Mag., vol. 32, no. 
3, pp. 87–109, May 2015. 

[6] O. Shalvi and E. Weinstein, “Super-exponential method 
for blind deconvolution,” IEEE Trans. Inf. Theory, vol. 
39, no. 2, pp. 504–519, Mar. 1993. 


	Convergence Behavior and Statistical Performance
	Sparse Phase Retrieval Performance
	Blind Equalization Performance

