HIGH-ORDER LOCAL NORMAL DERIVATIVE PATTERN (LNDP) FOR 3D FACE RECOGNITION

Sima Soltanpour*, Q.M. Jonathan Wu, CVSS lab, Department of Electrical & Computer Engineering University of Windsor, Windsor, Canada *soltanps@uwindsor.ca

METHODS CATEGORIZATION

Face recognition: global and local feature-based Methods Local descriptors: prominent points, patches or regions of the face to handle facial expression, occlusion, and missing

data

PRE-PROCESSING

- Remove spike and noises using median filter
- Hole filling by fitting square surface

Algorithm 1 n th -order LNDP	For a r
Input: 3D face data P	
1: for each point in P do	N'_{45°
2: Calculate normal components $(N_x, N_y, \text{ and } N_z)$)
3: end for	The se
4: for each N do	
5: Divide into 10×8 patches	
6: end for	
7: for $alpha = 0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}$ do	Binary
8: for each patch do	is equ

PROPOSED LNDP

For a normal component the first-order derivatives:

 $N'_{0^{\circ}}(P_{0}) = N(P_{0}) - N(P_{4}) \qquad N'_{90^{\circ}}(P_{0}) = N(P_{0}) - N(P_{2})$ $N'_{45^{\circ}}(P_{0}) = N(P_{0}) - N(P_{3}) \qquad N'_{135^{\circ}}(P_{0}) = N(P_{0}) - N(P_{1})$

The second-order normal local derivative pattern:

 $LNDP_{\alpha}^{2}(P_{0}) = (f(N_{\alpha}'(P_{0}), N_{\alpha}'(P_{1})), f(N_{\alpha}'(P_{0}), N_{\alpha}'(P_{2}))...,$ $f(N_{\alpha}'(P_{0}), N_{\alpha}'(P_{8})))$

Binary coding function s equal to 0 if

 $f(N'_{\alpha}(P_0), N'_{\alpha}(P_i))$ $N'_{\alpha}(P_0) N'_{\alpha}(P_i) > 0$

- Nose detection by curvature-based method, and region of interest (ROI) cropping
- Pose correction (the iterative closest point (ICP))

SURFACE NORMAL

 $P = [p_1, p_2, ..., p_n]^T, p_i \in R^3 \quad p_i = [p_{ix}, p_{iy}, p_{iz}]^T$ $n_i = [n_{ix}, n_{iy}, n_{iz}]^T Q_i = [q_{i1}, q_{i2}, ..., q_{il}]^T \min A(p_i, Q_i, n_i)$

Range image, normal component x, normal component y, and normal component z

LOCAL DERIVATIVE PATTERN

LDP: encoding directional pattern features

- for each pixel in patch of N do
 Apply Equation (★)
- end for
- Encode *LNDP* using Equation (**) Histogram construction
- 14: end for

9:

10:

11:

12:

13:

- 15: Concatenate the histogram for different patches16: end for
- 17: Concatenate the histogram for different α 18: return $HLNDP_x^n$, $HLNDP_y^n$, $HLNDP_z^n$

The decimal value of the descriptor: $LNDP^{n}_{\alpha}(P_{0}) = \sum LNDP^{n}_{\alpha}(P_{0}) \times 2^{l-1} \star \star$ Similarity:

$$S(H_G, H_Q) = \sum_{i=1}^{C} \min(H_G(i), H_Q(i))$$

and equal to 1 if

$N'_{\alpha}(P_0).N'_{\alpha}(P_i) <= 0.$

nth- order of LNDP:

 $LNDP_{\alpha}^{n}(P_{0}) = (f(N_{\alpha}^{n-1}(P_{0}), N_{\alpha}^{n-1}(P_{1})), f(N_{\alpha}^{n-1}(P_{0}), \star N_{\alpha}^{n-1}(P_{2}))..., f(N_{\alpha}^{n-1}(P_{0}), N_{\alpha}^{n-1}(P_{8})))$

HLNDP for x, y, and z facial normal components

EXPERIMENTAL RESULTS

Different orders on FRGC v2.0 DB

CMC (score-level fusion third-order LNDP)

Comparison of LBP-based methods

Descriptor	RR1 (FRGC v2.0)	Methods	RR1 (FRGC v2.0)	RR1 (Bosphorus)									
DepthLBP	86.2%	MS-eLBPDFs [1]	97.6%	97%									
DLDP ³	89.08%	V-LBP [2]	94.89% (900/150)	-									
$LNDP_x^3$	92.53%	MSMC-LNP [3]	96.3%	95.4% (2797/105)									
$LNDP_y^3$	91.18%	DLBP [4]	90%	90%									
$LNDP_z^3$	96.04%	Region-based-eLBP [5]	97.8%	_									
$LNDP_{xyz}^3$	98.1%	$LNDP_{xyz}^3$	98.1%	97.3%									
	3 89.08% V-LBP [2] 94.89% (900/150) - 3 92.53% MSMC-LNP [3] 96.3% 95.4% (2797/105) 3 91.18% DLBP [4] 90% 90% 3 96.04% [5] - - 3 98.1% LNDP ³ _{XYZ} 98.1% 97.3% Conclusion												
High-order LNDP (more detailed distinct information from the 3D facial image) is proposed. The score-level fusion (LNDPx, LNDPy, and LNDPz) is applied.													

α=1	350			Tı	α =1	1350			T2	<u>α=1</u> b)	1350			T3	α =1	1350			14
	17	10	15			17	10	15			F 7	го	F 5			17	10	15	
	\mathbf{p}_{2}	D,	<mark>ک</mark> ر			\mathbf{D}_{2}	<mark>ک</mark> ر	\mathbf{D}_{c}			D-	D,	D-			\mathbf{D}_{2}	D,	Ρc	
	P ₈	Ρ ₀	P_4			P8	• P ₀	P_4		Pi	P_8	P ₀	P ₄			`P ₈	` P ₀	` P ₄	

(a) 8-neighborhood around P0 (b) 32 templates for $\alpha = 0, 45, 90, 135$

The black and dashed red lines represent two - different templates:

T1(i =1, 5), T2(i =2, 6), T3(i =3, 7), and T4(i =4, 8)

References

The algorithm is training free and computationally efficient.
The proposed descriptor can be used in 3D object recognition as well.

[1] D. Huang, M. Ardabilian, Y. Wang, and L. Chen, "3-D face recognition using eLBP-based facial description and local feature hybrid matching," IEEE Transactions on Information Forensics and Security, vol. 7, no. 5, pp. 1551–1565, 2012.
 [2] H. Tang, B. Yin, Y. Sun, and Y. Hu, "3D face recognition using local binary patterns," Signal Processing, vol. 93, no. 8, pp. 2190–2198, 2013.

[3] H. Li, D. Huang, J.-M. Morvan, L. Chen, and Y. Wang, "Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns," Neurocomputing, vol. 133, pp. 179–193, 2014.
 [4] A. Aissaoui, J. Martinet, and C. Djeraba, "DLBP: A novel descriptor for depth image based face recognition," in IEEE International Conference on Image Processing (ICIP), 2014, pp. 298–302.
 [5] S. Lv, F. Da, and X. Deng, "A 3D face recognition method using region-based extended local binary pattern," in IEEE International Conference on Image Processing (ICIP), 2015, pp. 3635–3639.