Blind Non-intrusive Appliance Load Monitoring using Graphbased Signal Processing

Bochao Zhao, Lina Stankovic, Vladimir Stankovic Department of Electronic and Electrical Engineering University of Strathclyde, Glasgow, UK

Email: vladimir.stankovic@strath.ac.uk

Engineering and Physical Sciences Research Council

Motivation

- Large-scale smart meter deployments worldwide
- Huge investment
 - E.g., EUR35Billion in EU for installation of 200M smart meters
 - Consumers and government bear most of the cost
- Huge expectations...
 - Residential energy consumption reductions by 5-6%
 - Improved billing practices, i.e., more accurate, less estimated...
- ... and many different views
 - "Smart meters are poor value for the money" Which (2014)
- How to maximize benefits of smart metering to the customer?

REFIT Project

Personalised Retrofit Decision Support Tools for UK Homes using Smart Home Technology

- Consortium of three UK universities bringing together expertise in electrical engineering, civil engineering, design and social science
- Deeper energy feedback through energy disaggregation
- New itemized billing practices (at appliance- and activity-level)
- Timely appliance retrofit advice
- Assessment of user interaction with smart automation technology
- New **open-source energy datasets** (electricity and gas, including quantitative and qualitative data)

Engineering and Physical Sciences Research Council

Real-time Data Acquisition Platform

Open-source Dataset: goo.gl/QvQU4a

- Aggregate electricity data plus load data for 9 individual appliances (major consumers)
- 20 houses monitored for a period of 2 years
- Active power measured at 8secs sampling rate
- Additionally, a database of appliance signatures obtained via monitoring and crowdsourcing

Non-intrusive Appliance Load Monitoring (NILM)

- Energy disaggregation from only aggregate active power
- Our focus on low sampling rates ~sec, mins [UK DECC: 10sec aggregate data available to the customer]
- Motivation: Develop a practical method that can work in any house without any:
 - Training
 - Consumer effort (e.g., taking a time diary, sub-metering, switching on/off appliances)

Problem Formulation

Disaggregate total energy consumption down to the individual appliances used

$$p(i) = \sum_{j=1}^{|\overline{\mathbf{M}}|} p_j(i) + n(i)$$

Find $p_j(i)$ for all appliances j and all time instances i, where p(i) – total active power at time instance i $p_j(i)$ – power consumption of appliance j at time instance i

$\overline{\mathbf{M}}$ – a set of all known appliances n(i) – noise, including measurement noise and unknown appliances

$$\Delta p(i) = p(i+1) - p(i) \& \Delta p_m(i) = p_m(i+1) - p_m(i)$$

Graph-based Signal Processing (GSP)

- Embed the structure of the signal on to a graph
- Represent a dataset by a discrete signal indexed by a connected, undirected graph
- Signal samples determine vertices of the graph
- Weighted edges capture correlation among samples
- Emerging field used in many signal processing problems, such as signal filtering, denoising, image compression, interpolation, etc.
- GSP-based supervised classification:
 - Based on the fact that if a signal is piecewise smooth, then the total graph variation is generally small
 - A robust approach able to deal with large and complex datasets

For each appliance construct a graph and label it using training dataset (i=1, ..., n)

s_m : A set of no $\Delta p_m(i)$	odes defined according to
$S_m = \begin{cases} +1, \\ -1, \\ 0, \end{cases}$	for $\Delta p_m(i) \ge T$ and $i \le n$ for $\Delta p_m(i) \le T$ and $i \le n$ for $i > n$

T - small threshold used to detect events

 $A_{\rm m}$: weighted adjacency matrix, representing the correlation degree between two nodes, defined by Gaussian kernel weighting function:

$$A_m(i,j) = exp\left\{-\frac{(\Delta p(i) - \Delta p(j))^2}{\sigma^2}\right\}$$

 σ is a heuristically chosen scaling factor

V. Stankovic, J. Liao, L. Stankovic, "A graph-based signal processing approach to low-rate energy disaggregation" IEEE SSCI-2014

 $D_m(k,k) = \sum_{j=1}^N A_m(j,k)$

• Minimizing smoothness term $s_m{}^T L_m s_m$ is an unconstrained quadratic programming problem with a closed form solution:

$$s_m^* = L_m(n+1:N,n+1:N)^{-1} * [(-s_m(1:n)^T)L_m(1:n,n+1:N)]^T$$

Classification Step

For i > n,

- If s^{*}_m(i) ≥ 0.5, then the appliance m most likely has a state transition (e.g., on/off) at this time instance; then,
 - the corresponding p^{*}_m(i) is set as the appliance's mean operating power estimated from training data
 - The contribution of this appliance is removed from the aggregate dataset.
- Otherwise, the appliance m most likely has no state transition and $p_m^*(i)$ is set as 0.

GSP vs Hidden Markov Model (HMM)

- HMM currently, THE most popular NILM method
 - Good amount of high quality observations needed to construct a graph
 - Good solution if observations are available and complexity not an issue

- GSP: a graph constructed in an intuitive manner, hence no need for probability state/transition estimates
 - Can be supervised, unsupervised, even training-less
 - Scalable and flexible, deterministic or probabilistic approach
 - Low-complexity, even with a large amount of data

Proposed GSP-based NILM Approach

- Unsupervised approach that does not require any training
- GSP used three times:

Datasets and Evaluation Metrics

- Two datasets of active power readings for demonstration:
 - the REDD public datasets (http://redd.csail.mit.edu/) downsampled to 1 minute;
 - the REFIT dataset (goo.gl/QvQU4a), sampled at 8 seconds.

Evaluation Metrics	Definition
Accurate True Positive (<i>ATP</i>)	correct claim the detected appliance was running and the corresponding events are correctly named
Inaccurate True Positive (<i>ITP</i>)	correct claim the detected appliance was running but the corresponding events are incorrectly named
False Positives (FP)	incorrect claim that the detected appliance was not running
False Negatives (FN)	the appliance operation was not detected
Precision(PR)	PR = ATP/(ATP + FP)
Recall(<i>RE</i>)	RE = ATP/(ATP + ITP + FN)
F-Measure(F _M)	$F_M = 2 \cdot (PR \cdot RE) / (PR + RE)$

Performance Results

Appliance	ATP	ITP	FP	FN	PR	RE	F _M
Microwave	10	0	3	0	0.77	1	0.87
Toaster	4	1	3	3	0.57	0.5	0.53
Stove	7	5	3	2	0.7	0.5	0.58
Refrigerator	439	8	56	132	0.89	0.76	0.82
Dishwasher	26	6	61	5	0.3	0.7	0.42
Heater	3	0	56	3	0.05	0.5	0.09
AC	44	9	0	1	1	0.81	0.9
Light	7	6	7	12	0.5	0.28	0.36
Unknown	146	6	56	65	0.72	0.67	0.69

House 6 from the REDD dataset (1 min)

Appliance	ATP	ITP	FP	FN	PR	RE	F _M
Microwave	7	10	0	3	1	0.35	0.52
Toaster	4	1	2	1	0.67	0.67	0.67
Kettle	39	7	6	2	0.87	0.81	0.84
Refrigerator	18	0	2	0	0.9	1	0.95
Freezer	54	16	180	24	0.23	0.57	0.32
TV	4	0	180	6	0.02	0.4	0.04
WM	3	1	8	0	0.27	0.75	0.4

House 8 from the REFIT dataset (8 sec)

Performance Comparison

Appliance		House 2		House 6			
	F_{M_U}	F_{M_S}	F_{M_H}	F_{M_U}	F_{M_S}	F_{M_H}	
Microwave	0.94	0.26	0.47	0.87	0.92	0	
Toaster	0.73	0.59	0.68	0.53	1	0	
Stove	0.25	0.41	0.21	0.58	1	0	
Refrigerator	0.78	0.63	0.9	0.82	0.54	0.88	
Dishwasher	0.77	0.56	0.04	0.42	-	-	
Heater	-	-	-	0.09	0.11	0.03	
AC	-	-	-	0.9	0.49	0.12	

Appliance		House 8		House 10			
	F_{M_U}	F_{M_S}	F_{M_H}	F_{M_U}	F_{M_S}	F_{M_H}	
Microwave	0.52	0.47	0.46	-	-	-	
Toaster	0.67	0.6	0.26	-	-	-	
Kettle	0.84	0.92	0.55	-	-	-	
Refrigerator	0.95	0.22	-	0.53	0.43	0.34	
Dishwasher	-	-	-	0	0.63	0.44	
Washing Machine	0.4	0.67	-	0.96	0	-	
Freezer	0.32	0.58	-	0.49	0.35	0.34	

REFIT dataset. F_{M_U} , F_{M_S} and F_{M_H} : the proposed approach, [1] and [2], respectively.

[1] V. Stankovic, J. Liao, and L. Stankovic, "A graph-based signal processing approach for low-rate energy disaggregation," in *Proc. IEEE Symposium Series on Computational Intelligence (SSCI)*, Orlando, FL, December 2014.

[2] O. Parson, S. Ghosh, M. Weal, and A. Rogers, "Non-intrusive load monitoring using prior models of general appliance types," in *Proc. The* 26th Conf. Artificial Intelligence (AAAI-12), Toronto, CA, July 2012.

Conclusions

- A NILM approach proposed that does not require any training
- Besides the refrigerator, both GSP-based approaches perform significantly better than the HMM-based approach
- The proposed training-less GSP-based NILM approach is competitive to the supervised GSP-based NALM approach
- Future Directions:
 - Determine performance limits of the proposed scheme (submitted Dec.2015)
 - Efficient implementation of the approach as part of a decision support system
 - Application to other demand management tasks, such as demand prediction and load profiling