AST

Yujie Li¹, Atsunori Kanemura^{1,2}, Hideki Asoh¹, Taiki Miyanishi², Motoaki Kawanabe² ¹National Institute of Advanced Industrial Science and Technology (AIST) ²Advanced Telecommunications Research Institute International (ATR)

INTRODUCTION

Selecting authentic scenes about activities of daily living (ADL) is to support our memory of everyday life. Key-frame useful extraction for first-person vision (FPV) videos is a core technology to realize such memory assistant.

FPVs ✓ Shift background √ With much noise √ Only parts of subjects

Normal videos ✓ Stable background √ With less noise

> The overview of the video feature selection.

video segments CNN for video segments

sparse representation

PROPOSED METHOD

>Sparse representation: Y=DH.

> Data processing

In our situation, we use (Probabilistic Canonical Correlation Analysis) PCCA to embed the multi-sensor integration data (video and sensors) to a common space. $\mathbf{D}_v \in \mathbb{R}^{d_v}$

$$\min\left(\frac{1}{2}\sum_{n_{v}=1}^{N_{v}}\sum_{n_{s}=1}^{N_{s}}w_{ij}^{n_{v}n_{s}}\|\mathbf{A}^{v}\mathbf{x}_{i}^{v}-\mathbf{A}^{s}\mathbf{x}_{j}^{s}\|^{2}\right)$$

$$+\frac{1}{2}\sum_{n_{s}=1}^{N_{s}}\sum_{n_{v}=1}^{N_{v}}w_{ij}^{n_{s}n_{v}}\|\mathbf{A}^{s}\mathbf{x}_{i}^{s}-\mathbf{A}^{v}\mathbf{x}_{j}^{v}\|^{2}\right)$$

$$Low-dimensional constraints of the second se$$

EXTRACTING KEY FRAMES FROM FIRST-PERSON VIDEOS IN THE COMMON SPACE OF MULTIPLE SENSORS

summary

Evaluation

experiments.

Case 1: 2 /80 better than Case 2: 1.46/60 Entropy/SVO accuracy (the higher the better)

>Experimental results.

Table 1. The accuracy various kinds of information

Session	lpha	Video	Sensors	Multi
1	$4\sqrt{2}$	0.15	0.13	0.23
2	4	0.21	0.16	0.23
3	$8\sqrt{2}$	0.24	0.19	0.22
4	$8\sqrt{2}$	0.19	0.07	0.15
5	$4\sqrt{2}$	0.15	0.13	0.24
6	$4\sqrt{2}$	0.13	0.15	0.20
7	$8\sqrt{2}$	0.22	0.08	0.22
8	$8\sqrt{2}$	0.13	0.13	0.15
9	8	0.13	0.18	0.20
10	$2\sqrt{2}$	0.10	0.10	0.14

Table 2 . The entropy various kinds of information						
Session	α	Video	Sensors	Multi		
1	$4\sqrt{2}$	2.81	2.59	3.46		
2	4	2.81	2.81	3.00		
3	$8\sqrt{2}$	3.59	3.32	3.32		
4	$8\sqrt{2}$	3.32	2.00	3.00		
5	$4\sqrt{2}$	3.32	3.17	3.46		
6	$4\sqrt{2}$	2.32	2.59	3.00		
7	$8\sqrt{2}$	3.46	2.00	3.32		
8	$8\sqrt{2}$	2.59	2.81	2.81		
9	8	2.81	3.17	3.32		
10	$2\sqrt{2}$	2.00	2.00	2.32		

> The number of representatives found by our method for each of the events in the video.

- multisensory integration.
- the proposed algorithm.
- information.

This study was supported in part by NEDO, JST CREST JPMJCR15E2, JST SICORP, and JSPS KAKENHI 26730130 and 15K12112.

>We proposed a novel framework for key frame extraction of FPVs by sparse modeling representation selection from

 \succ We use video features from DNN instead of raw frames.

 \succ Experimental results show that our proposed approach achieves modest improvements over a pure video information and the accuracy and entropy results predict the efficient of

>Moving forward, we plan to improve our method by using other nonvideo information such as audio and eWatch