

Light-field Image Compression Based on Variational Disparity Estimation and Motion-Compensated Wavelet Decomposition

1. Light-field Imaging

- A collection of pin hole views from view points on plane parallel to the image plane.

Fixing spatial coordinate (Ω), varying directional coordinate (Π).

Varying spatial coordinate (Ω), fixing directional coordinate (Π).

- Compression of sub-aperture images.
- Estimate disparity map and use it in a motioncompensated wavelet decomposition scheme.
- Support both Lossless and Lossy compression.
- **U** View Extraction
- Decodes lenslet images into sub-aperture images.
- **Disparity Estimation**
- Estimate disparity map using variational framework.
- Motion-compensated Wavelet Decomposition 2-step lifting scheme with reversible wavelet transform.
- **Sub-band Compression**
- JPEG2000 coding of high/low-pass sub-band view.

Trung-Hieu Tran^{*1}, Yousef Baroud¹, Zhe Wang¹, Sven Simon¹, David Taubman²

¹The University of Stuttgart, Germany ² The University of New South Wales, Australia

*Email: trung.hieu.tran@ipvs.uni-stuttgart.de

Microlens image

Sub-aperture image

3. Disparity Estimation Framework 4. Motion-compensated Wavelet Decomposition \geq 2D wavelet transform and motion compensation are jointly performed. Plenoptic Variational Optimization Framework [1] > Reversible integer-to-integer wavelet transforms for lossless and lossy compression. $\underset{\omega}{\operatorname{argmin}} E(\omega) = \int \mathbf{D}(\mathbf{x}, \omega) + \alpha \mathbf{S}(\mathbf{x}, \omega) d\mathbf{x}$ > Deploy a two-step lifting scheme based on Haar and bi-orthogonal 5/3 wavelet kernel. **Data Term** 1D Forward transform Intensity Constancy Assumption $h_{k}(\mathbf{x}) = V_{2k+1}(\mathbf{x}) + \alpha_{1} \mathcal{W}_{2k,2k+1}[V_{2k}(\mathbf{x})] + \alpha_{2} \mathcal{W}_{2k+2,2k+1}[V_{2k+2}(\mathbf{x})]$ $F_{g,i}(\mathbf{x},\omega) = \mathbf{L}(\mathbf{x},\theta_i) - \mathbf{L}(\mathbf{x}+\theta_i\omega,\theta_0) = 0$ $l_{k}(\mathbf{x}) = V_{2k}(\mathbf{x}) + \beta_{1} \mathcal{W}_{2k+1,2k}[h_{k}(\mathbf{x})] + \beta_{2} \mathcal{W}_{2k-1,2k}[h_{k-1}(\mathbf{x})]$ Gradient Constancy Assumption 1D Inverse transform $(\theta, \theta_0) = 0$ $V_{2k+1}(\mathbf{x}) = h_k(\mathbf{x}) - \alpha_1 \mathcal{W}_{2k,2k+1}[V_{2k}(\mathbf{x})] - \alpha_2 \mathcal{W}_{2k+2,2k+1}[V_{2k+2}(\mathbf{x})]$ RGB Color space $-\gamma \sum \Psi \left(\sum F_{G,i}(\mathbf{x},\omega)^2 \right)$ $V_{2k}(\mathbf{x}) = l_k(\mathbf{x}) - \beta_1 \mathcal{W}_{2k+1,2k}[h_k(\mathbf{x})] - \beta_2 \mathcal{W}_{2k-1,2k}[h_{k-1}(\mathbf{x})]$ 2D transform HSV Color space $-\gamma \sum \sum \Psi \left(F_{G,i}(\mathbf{x},\omega)^2\right)$ Apply 1D transform horizontally and then vertically. D(z $\theta_i \in \Pi c \in \{HSV\}$ • $h_k(\mathbf{x})$ High-pass sub-band view Sub-quadratic function $\Psi(s^2) = \sqrt{s^2 + \epsilon^2}$ for better handling outliers. • $l_k(\mathbf{x})$ Low-pass sub-band view **Given Short Schuller Flow-driven Smoothness Term** • $V_i(\mathbf{x})$ A view indexed either horizontally or vertically $S(\mathbf{x},\omega) = \Psi(|\nabla \omega|^2)$ • $W_{i,j}[*]$ Wrapping from the coordinate of view i to coordinate of view j Piecewise smoothness and better handle outliers. References [1] Trung-Hieu Tran, Zhe Wang, and Sven Simon, "Variational Disparity Estimation Framework for Plenoptic Images," in 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Jul 2017, pp. 1–6, IEEE. [2] Wanner, S., Meister, S., & Goldluecke, B. (2013). Datasets and Benchmarks for Densely c. Level 2 a. Original view set b. Level 1 Sampled 4D Light Fields. Vision, Modeling & Visualization, 225–226.

$$F_{G,i}(\mathbf{x},\omega) = \nabla \mathbf{L}(\mathbf{x},\theta_i) - \nabla \mathbf{L}(\mathbf{x}+\theta_i\omega)$$

$$\mathcal{D}(\mathbf{x},\omega) = \sum_{\theta_i \in \Pi} \Psi\Big(\sum_{c \in \{RBG\}} F_{g,i}(\mathbf{x},\omega)^2\Big) +$$

$$f(\mathbf{x},\omega) = \sum_{\theta_i \in \Pi} \sum_{c \in \{HSV\}} \Psi(F_{g,i}(\mathbf{x},\omega)^2) +$$

[3] "JPEG Pleno Database: EPFL Light-field data set," http://jpeg.org/plenodb/lf/epfl/

5. Experimental Results

- Running coding framework on both Real-world [3] and Synthetic Light-field [2] data.
- Compare with JPEG-LS and direct application of JPEG2000.
- Lossless Compression
- 25% and 5.5 % better than Jpeg-LS and JPEG2000 for synthetic data.
- 11% and 7.3 % better than Jpeg-LS and JPEG2000 for Realworld data.
- Lossy Compression

✤ 5/3 wavelet kernel consistently provides a better compression quality compared to JPEG2000 in both synthetic and real-world dataset.

			•	••		•
	Image	Raw	JpegLS	Jpeg2000	Haar	5/3
	buddha2	143,33	90,38	62,42	58,04	57,18
	mona	143,33	77,44	52,16	40,99	40,82
	papillon	143,33	70,17	51,57	44,47	44
	stillLife	143,33	113,86	79,59	67,79	66,5
•	horses	143,33	96,41	60,8	59,93	58,65
	books	183,09	93,84	103,74	89,18	86,19
	bikes	183,09	106,73	92,14	84,72	78,73
	danger	183,09	105,42	90,41	80,83	74,68
	pillars	183,09	91,48	76,87	71,21	66,74
	swans1	183,09	95,1	88,45	80,39	75,02

Lossless compressed file-size in mega bytes (MB)

data [3] (bottom)

Germany

	Haar	5/3
α_1	-1	- 1/2
α_2	0	- 1⁄2
β_1	1/2	1⁄4
B2	0	1⁄4

Wavelet decomposition parameters

Demonstration of 3-level MWD for a 5x5 view set of "bikes" lenslet data [3]

from Light-field images (left)