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INTRODUCTION GRASSMANN KERNEL LEARNING EXPERIMENTS AND RESULTS Discriminant Grassmann kernel (DGK) | 92.1%

Grassmann kernels (Eq. (5)) | 90.5%

O Image-set classification has been widely researched in 0 Partial Grassmann kernels Linear dynamical system (LDS) [27] | 87.5%

computer vision due to its widespread applications Y L _ Corpus Compressive sensing LDS (CS-LDS) [27] | 89.1%
Two points: zi and Z] *ETH dataset Grassmann discriminant analysis (GDA) [10] | 92.5%

O Image-set classification can preferably handle the v’ Defining the partial Grassmann kernel K7 € RN*N . , Covariance discriminative learning (CDL)[7] | 91.7%
Ic _ o 11y USCD traffic dataset lassif 1; 4 511 9139
conditions with multi-view cameras or larger within-class with respect to the p-th principal angle as follows : NN classifier on Hellinger distance [3] 1.3%

divergence tasks. e e le"] “lf‘is.iﬁer o Jl;di”e’rg““f bl | 91.0%
, 1SCTIMINant analyuc stationary suospdce andiysis
KP)ij = kP (24, 25)

Image-set classification is proposed Where Discriminant non-linear stationary subspace analysis
5 (DNLSSA+RBF kernel) [28] | 94.5%
kP (zi, z;) = cos” 0, v' As can be seen, the performance has been largely

[0 Based on partial kernels of principal angels, the global o oeved from 94.0% ' weiaht combination) t |
kernels between image sets aggregate the partial kernels, v Since k7 only reflects partial relations between two improved from 94.0% - {equal weight combination) o Table 2. Performance comparison on the UCSD dataset.

. . . . 95.5% by the proposed discriminant learning (DGK).
which are learned by kernel alignment In a supervised points based on the p-th principal angles, we refer it as By e PIOP 9 )

: v The roposed DGK achieves state-of-the-art '
learning framework . prop Conclusion
J the partial Grassmann kernel performance which is better than most of the compared

methods in Table 1.

O Presented discriminant Grassmann kernel (DGK)
-]
GRASSMANN MANIFOLDS learning for image-set classification, which learned the

O Discriminant learning by kernel alignment Discriminant Grﬁﬂﬂmann kerm“jlﬂ (DGK) | 95.5% weight of partial Grassmann kernel by kernel alignment with
Grassmann kernels (Eq. (5)) | 94.0% target kernel constructed by labels

O Linear subspaces on Grassmann manifolds

¥ Equal weight combination Kernel Fisher Discriminant (KFD) [21] | 81.1% O Evaluated the DGK on the ETH dataset and traffic
Defination 1 [10] The Grassmann manifold G(m, D) is the [K)ij = Z [P Marginal Fisher Analysis (MFA) [22] | 80.1% congestion classification on the UCSD dataset
p=1

set of m-dimensional linear subspaces of the RP. Manifold-Manifold Distance (MMD) [23] | 85.0%

Mutual Subspace Method (MSM) [24] | 83.3%

y | o v'Discriminant learning by kernel alignment Manifold Discriminant Analysis (MDA) [25] | 89.0%
The matrix representation Is constructed based on Discriminant Canonical Correlations (DCC) [6] | 91.7%

orthogonalization and normalization, which guarantees y Log-Euclidean metric learning (LEML) [8] | 94.8% [5] “Beyond gauss: Image-set matching on the riemannian manifold of pdfs,” in

i i . ST . ICCV, 2015
ItS uniqueness. Graph embedding discriminant analysis (GEDA) [11] 1 92.3% [6] “Discriminative learning and recognition of image set classes using

Localized multi-kernel metric learning canonical correlations.” T-PAMI. 2007
‘ObjeCtIVG function (LMKML) [26] | 94.5% [7] “Covariance discriminative learning: a natural and efficient approach to

0 Pri nClpal Angles Image set classification,” in CVPR, 2012
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v" In practice, for the matrix representations M1 and M2 , 1,y=1
the principal angles can be computed by SVD

where cos © = diag(cosfy, ...,cos0,,).




