
 Image-set classification has been widely researched in

computer vision due to its widespread applications

 Image-set classification can preferably handle the

conditions with multi-view cameras or larger within-class

divergence tasks.

 Learning discriminant Grassmann kernels (DGK) for

image-set classification is proposed

 Based on partial kernels of principal angels, the global

kernels between image sets aggregate the partial kernels,

which are learned by kernel alignment in a supervised

learning framework
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 Linear subspaces on Grassmann manifolds

✓The matrix representation is constructed based on

orthogonalization and normalization, which guarantees

its uniqueness.

 Principal Angles

✓ In practice, for the matrix representations M1 and M2 ,

the principal angles can be computed by SVD

✓

EXPERIMENTS AND RESULTS

Corpus 

•ETH dataset 

•USCD traffic dataset

 Presented discriminant Grassmann kernel (DGK)

learning for image-set classification, which learned the

weight of partial Grassmann kernel by kernel alignment with

target kernel constructed by labels

 Evaluated the DGK on the ETH dataset and traffic

congestion classification on the UCSD dataset

GRASSMANN KERNEL LEARNING

 Partial Grassmann kernels

✓ Two points: zi and zj

✓ Defining the partial Grassmann kernel                      

with respect to the p-th principal angle as follows：

Where

✓ Since only reflects partial relations between two

points based on the p-th principal angles, we refer it as

the partial Grassmann kernel

 Discriminant learning by kernel alignment

✓ Equal weight combination

✓Discriminant learning by kernel alignment

•Objective function
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 Set-based object recognition on ETH dataset

 Video-based traffic congestion classification on USCD

✓ As can be seen, the performance has been largely

improved from 94.0% (equal weight combination) to

95.5% by the proposed discriminant learning (DGK).

✓ The proposed DGK achieves state-of-the-art

performance which is better than most of the compared

methods in Table 1.

✓ The proposed DGK has largely improved the

Grassmann kernels from 90.5% (equal weight

combination) to 92.1% (DGK), which demonstrates

the great effectiveness of the proposed supervised

learning framework via kernel alignment for image-set

classification.

✓ The proposed DGK achieves state-of-the-art

performance which is better than most of the compared

methods in Table 2.


