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ETN-FPI online seminar

Multi-camera light field rig
 24× IDS USB 3 uEye CP RGB cameras at 2 hosts (12 per host)

 2× Microsoft Kinect V2 RGB-D cameras at 1 host

 1× Isel iMC-S8 microstep controller for 2 linear axes

 1× Hardware trigger for synchronized uEye camera capture

Motivation
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Motivation

Kinect V2 cameras
 Large displacement: 2.4 meters

ToF sensor in a Kinect V2 camera
 Resolution: 512 × 424 pixels

 FOV: 71° × 60°

RGB sensor in a Kinect V2 camera
 Resolution: 1,920 × 1,080 pixels

 FOV: 84° × 54°

The traditional checkerboard-based calibration method [1] is
prone to fail if the checkerboard is not huge enough for being
captured.
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[1] Zhang, A flexible new technique for camera calibration, TPAMI 2000, vol. 22, no. 11, pp. 1330-1334.
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For non-large-displacement environment
 BAICP, ICPR 2014 [2]

 3D correspondence-based method, ICMEW 2015 [3]

 An optical tracking system, 3DUI 2015 [4]

 OpenPTrack, RAS 2016 [5] 

 Coarse-to-fine framework
 3DV 2015 [6]

 Coarse estimation: Marker (2D)

 Estimation refinement: Iterative Closest Point (ICP)

 SCP 2017 [7]
 Coarse estimation: Wand (1D)

 Estimation refinement: R-Nearest Neighbor (RNN)

Related Work 
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Preliminary

Proposed Method
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Coarse estimation

Estimation refinement



Proposed Method

Stage 1: Coarse estimation
With calibration objects (baseline approach)

A standard Perspective-n-Point (PnP) problem

 Levenberg-Marquardt optimization algorithm; 

 EPnP [8], RPnP [9], etc.
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[8] Lepetit et al., Epnp: An accurate O(n) solution to the PnP problem, IJCV 2009, vol. 81, no. 2, pp.
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Proposed Method

Stage 1: Coarse estimation
With camera and scene constraints
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SURF k-Nearest-Neighbors (KNN)

Ratio test
RANSAC



Proposed Method

Stage 2: Estimation refinement
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Experiments

Capture device
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Experiments

Registered color images
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512
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Experiments

Experimental Settings
 Checkerboard-captured data

 In front of the rig at a distance of 2.8 m;

 28 (4 × 7) inner corners;

 Square size: 124 × 124 mm.

 Scene-captured data
 Captured room size: 5.5 × 3.0 × 7.8 m (w × h × d)

 Evaluation metric
 Root-Mean-Square Error (RMSE) 

 Others
 libfreenect2 -> registered color and depth image
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Experiments

Quantitative evaluation

 In the coarse estimation stage,
 checkerboard-based method achieves much more precise

results than the homography and fundamental matrices-
based methods.

 In the estimation refinement phase,
 the precision of the checkerboard-based method decreases a

little bit;

 the precision of coarse estimation methods using camera and
scene constraints improves dramatically.
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Experiments

Qualitative evaluation 
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Checkerboard-based
coarse-to-fine method

Fundamental matrix-based
coarse-to-fine method
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Conclusion

Camera and scene constraints are exploited inside a coarse-
to-fine framework to solve the Kinect V2 registration
problem in the large-displacement environment;

The fundamental matrix-based coarse-to-fine registration
method outperforms the checkerboard-based coarse-to-fine
registration method on a multi-camera rig with a large
displacement between two Kinect V2 sensors.
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Thank you!


