

3D Convolutional Neural Network with Multi-Model Framework for Action Recognition

Longlong Jing*, Yuancheng Ye*, Xiaodong Yang^, Yingli Tian* *The City University of New York, NY, USA ^NVIDIA Research, CA, USA

Motivation

Home Security

Motivation

- Public Security & Service
 - public agency
 - financial service
 - manufacturer
 - retailer
- Intelligent Analysis
 - big data
 - trends out of data

Action Recognition

- Identifying the activity people doing in videos.
- Capturing both the spatial and temporal information of the activity.

Playing basketball

Doing push-up

Playing baseball

Existing Algorithms

Hand-designed feature-based

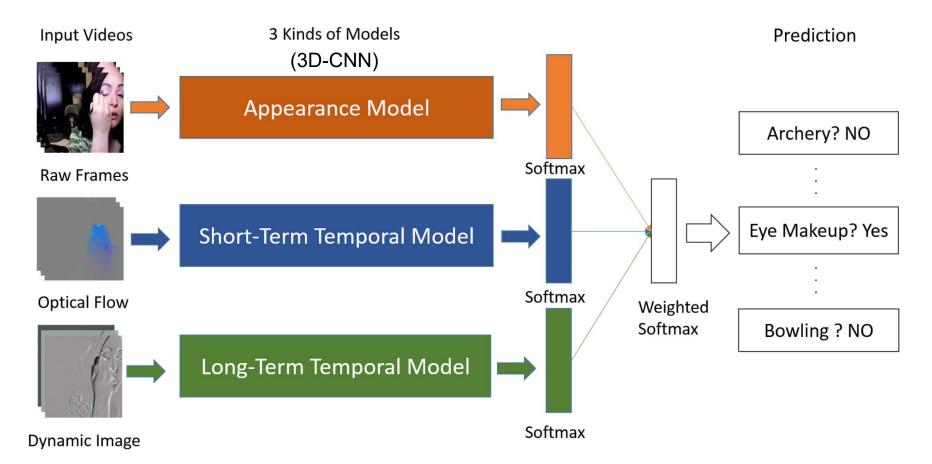
Extracting features by hand-designed algorithms. Applying classifiers to the extracted features.

2D CNN-based

Treating a video as a set of frames.

Applying 2D-CNN in each frame.

3D CNN-based


Dividing each video into small clips with fixed length. Applying 3D-CNN in each clip.

LSTM-based

Treating the whole video as frame sequence.

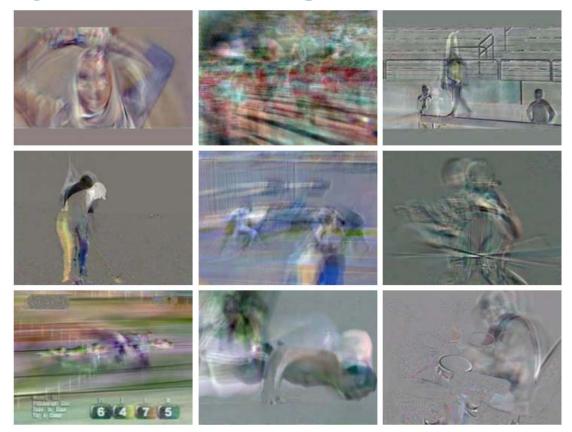
Handle videos with variable lengths.

Our Framework

Appearance Model

- The network is an 11-layer 3D-CNN.
- The input of the appearance model is 16 consecutive RGB frames.
- The network captures the appearance information from these clips.

Short-Term Temporal Model


- The network is an 11-layer 3D-CNN.
- The input is 16 consecutive optical flow images. Optical flow is calculated by the method [Brox et al. 2004].
- Optical flow captures the motion between frames and boundary of moving objects.

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, "High accuracy optical flow estimation based on a theory for warping," ECCV'04.

Long-Term Temporal Model

- The network is an 11-layer 3D-CNN.
- The input of the long-term temporal model is 16 dynamic images (generated from the whole video).
- The network captures the long-term temporal information from the whole video.

Dynamic Image Examples

The figure is from [Bilen et al.]

Fernando et al., "Modeling video evolution for action recognition," CVPR 2015. Bilen et al., "Dynamic image networks for action recognition," CVPR 2016.

Dynamic Image

- Applied a ranking machine with approximate rank pooling.
- Directly applying approximate rank pooling on the raw image pixels of a video.
- The parameters of the frames can be pre-computed, which makes the computation of dynamic image very efficient.

Dynamic Image Generation

- $\rho(I_1, ..., I_T, \varphi) = \sum_{t=1}^T \alpha_t \varphi(I_t)$. --- approximate rank pooling
- $\alpha_t = 2(T t + 1) (T + 1)(H_T H_{t-1}).$
- $H_t = \sum_{t=1}^t 1/t$. -- the *t*-th Harmonic number
- $\varphi(I_t)$ is the pixels for the t^{th} frame, T is the length of the video.

Dynamic Image actually is the linear combination of the frames.

Bilen et al., "Dynamic image networks for action recognition," CVPR 2016.

Datasets

- UCF101
 - 13K videos (10K training, 3K testing).
 - 101 categories.
 - Frame rate: 30FPS.
- HMDB51
 - 7K videos (5K training, 2K testing).
 - 51 categories.
 - Frame rate: 25FPS.

Experimental Results

Input	UCF101	HMDB51
RGB with 3D CNN[7]	82.5	50
OF with 3D CNN	78.2	48.9
DI with 2D CNN[11]	70.9	35.8
DI with 3D CNN	78.4	46.8
RGB + DI with 2D CNN[11]	76.9	42.8
RGB + DI with 3D CNN	85.8	53.6
RGB + OF with 3D CNN	87.6	56
RGB + OF + DI with 3D CNN	88.6	57.9

[7] Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015.[11] Bilen et al. Dynamic Image Networks for Action Recognition, CVPR 2016.

Efficiency of Dynamic Image

- The computation of dynamic image is very efficient.
- The computation of dynamic Image needs less memory than others forms.

Generated Data	Time	Memory
Dynamic Image 16	0.348s/Video	16 frame/Video
Dynamic Image 32	0.382s/Video	32 frame/Video
Optical Flow	140s/Video	99 frame/Video

Summary

- We proposed a new framework for action recognition by combining multiple feature models.
- We compressed a video into 16 frame dynamic images. The dynamic image preserves the overall temporal information.
- The computation of dynamic image is very efficient for real-time applications.

Thank You & Questions!