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A Deep Learning Network for Vision based Parking Space Detection System
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Fig. 2. Inter-object occlusion and perspective distortions
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Fig. 3. Vehicle size and parking displacement problems
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Fig. 4. The proposed framework
Spatial Transformer Network [1]
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Fig. 5. Spatial Transformer Network
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Spatial Transformer Network (cont.)
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Where:
(x*,v*®): the source coordinate in the input image

Ty : 2D affine transformation (6 parameters)
(x",y"): the target coordinate in the transformed image

Neighbor’s Hypotheses Prediction
Network (NHPH)
« Solving the inter-occlusion problem

» Designing a CNN-based deep learning
network to predict the status of a
3-space unit
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Being determined by many stages
separated by a pooling layer

Down-sampling the input image to a small
size before applying fully connected layers for
classification

Increasing the number of kernels in the later
layer

144x96x(16,32,64)
36x24x256 -
3x2x512 X1X
/4
——— /)
9x6x512 1x1x256
| [ 72x48x128

144x96x3

Convolution + RelLU
Pooling
Fully connected + RelLU

QX

Fully connected + Sigmoid

Fig. 6. Neighbor’s Hypotheses Prediction Network

Inference layer

« Building a 2-class logistic regression model
on the top of NHPN
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EXPERIMENTAL RESULTS
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Fig. 7. A snapshot of the website demonstration. Visit the

website [2] for details

Table 1. Performance Comparison

ACC FPR FNR
Huang’s work [3] | 98.44% | 0.0128 | 0.0173
CNN, 96.78% | 0.0666 | 0.0136
CNN, 98.71% | 0.0129 | 0.0129
CNN-STN, 99.01% | 0.0057 | 0.0124
CNN-STN, 98.98% | 0.0057 | 0.0129
Proposed method | 99.25% | 0.0029 | 0.0103
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EXPERIMENTAL RESULTS

Fig. 8. Transformed Patches from different methods and
the detection results. Red boxes indicate false detection
and green boxes mean correct detection.
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