Face Recognition using Multi-modal

Low-rank Dictionary Learning

Homa Foroughi, Moein Shakeri, Nilanjan Ray, Hong Zhang

Department of Computing Science University of Alberta Edmonton, Canada

Face Recognition

The Winner?!

DeepFace[Facebook]

Success of CNNs

Dataset	# Images	# Identities
MegaFace	1.02 M	690 K
VGGFace (Oxford)	2.6 M	2,622
DeepFace (Facebook)	4.4 M	4,030
FaceNet (Google)	200 M	8 M
LFW	13,233	5,749

Data Augmentation

- □ Transfer Learning
 - CNN as a fixed feature extractor
 - Fine-tune CNN

Yosinski, Jason, et al. "How transferable are features in deep neural networks?" NIPS. '14

Face Recognition

- ✤ 38 subjects
- ✤ Training: 20 out of 64 images per class

Large intra-class variation

• 100 subjects

- Small-sized training set
- Training: 8 out of 26 images per class
 - Low-rank Dictionary Learning

- ✤ 143 subjects
- Training: 10 out of >11 images per class (Min: 11, Max: 500)

5

Shallow Methods for Face Recognition

Sparse Representation Theory

$$y = \alpha_1 D_{:,1} + \alpha_2 D_{:,2} + \alpha_3 D_{:,3} + \alpha_4 D_{:,4} + \cdots$$

- ✤ Simple
- Succinct
- Rich

Across-class representation : Collaboration & Competition

Building Dictionary

♦ Naïve way : Using training samples as dictionary without any training

Low-rank Matrix Recovery

Low-rank Dictionary Learning

D

E

Information Fusion

Multi-Modal Dictionary Learning

♦ Goals:

- No overhead, Second modality derived from first one
- Applicable on single-modality captured data
- Improve recognition rate

Our Modalities

- \diamond Two modalities
 - K=1; Gray-scale image
 - K=2; Illumination invariant representation of image

Moein Shakeri, et al. "Illumination invariant representation of natural images for visual place recognition". IROS 16

Multi-Modal Structured Low-rank DL

- Dictionary: Discriminative & Reconstructive
- ✤ Noise: Sparse
- ✤ Coding coefficients: Sparse, Block-diagonal, Low-rank

$$Z_K^* = \begin{bmatrix} Z_K^{*1} & 0 & 0 & 0\\ 0 & Z_K^{*2} & 0 & 0\\ 0 & 0 & \dots & 0\\ 0 & 0 & 0 & Z_K^{*C} \end{bmatrix}$$

$$Z_{K} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Multi-Modal Structured Low-rank DL

$$s.t. \quad X_K = D_K Z_K + E_K \quad K = 1,2$$

- Training images of the same class have the same representation code
- Collaboration of two modalities; affect on each other

Q: ideal representation

Optimization of MM-SLDL

Inexact ALM

Find Winner Modality for Classification

Competitors

 \diamond Shallow methods:

- Single-modality low-rank dictionary learning
- Multi-modal dictionary learning
- \diamond Deep methods:

Fine-tuned

Alex-Net: trained on 1.2M natural images

Extract CCN features + NN Classifier

VGG-Face: trained on 2.6M face images

Uncontrolled Face Recognition - LFW

- ✤ Subset: 143 subjects with >11 images per class, First 10 for train
- 65×40 images = 2600 features
- ✤ Occlusion, variations in pose, expression, illumination, clothing

Method	Rec. Rate	Method	Rec. Rate
MLDL [9]	74.10	UMD ² L [8]	70.43
MSDL [15]	64.25	$D^{2}L^{2}R^{2}$ [4]	75.20
SLRDL [5]	74.20	JP-LRDL [3]	79.87
AlexNet [16]	40.31	VGG-Face [17]	90.01
SLDL-Mod2	76.77	MM-SLDL	88.04
		①	

Controlled Face Recognition - AR

- 100 subjects *
- 55*40 images = 2200 features *
- 8 out of 26 images per class for train *

Method	Sunglasses
MLDL [9]	90.51
UMD ² L [8]	88.26
MSDL [15]	83.20
$D^{2}L^{2}R^{2}$ [4]	92.20
SLRDL [5]	87.35
JP-LRDL [3]	93.20
AlexNet [16]	30.33
VGG-Face [17]	85.90
MM-SLDL	96.70

Method	Misc.
MLDL [9]	76.33
UMD ² L [8]	71.30
MSDL [15]	68.44
$D^{2}L^{2}R^{2}$ [4]	75.30
SLRDL [5]	72.30
JP-LRDL [3]	78.23
AlexNet [16]	25.55
VGG-Face [17]	79.83
MM-SLDL	85.30

Controlled Face Recognition – Extended YaleB

- 38 subjects, 55*48 images = 2640 features
- ✤ 20 out of 64 images per class for train

Conclusions

- ♦ A novel multi-modal structured low-rank dictionary learning method
- ♦ Adopting illumination invariant representation as a modality
- \diamond Applicable to millions of images captured under single-modality
- ♦ Superior performance on small training sets with large intra-class variation

Thank You!