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1. PROBLEM CHARACTERIZATION

Given an event E, captured by dif-
ferent cameras from different viewpoints
with recordings at different time instants
and durations, our goal is to align them
spatially and temporally.

2. PROPOSED METHODOLOGY
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Fi(ta, tb) = ||fi(ta)− fi(tb)||1, ta, tb ∈ [ti, ti + Ti],

Once the fingerprints Fi from video Vi and Fj from video Vj

have been computed, they are compared by computing the complete
normalized cross-correlation matrix.
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Temporal Shift: ∆ti,j = arg max
τa,τb

(Ci,j(τa, τb))

3. EXPERIMENTAL SETUP

In our experiments, we investigated the use of two pre-
trained CNN architectures:

I VGG19 [1]: Input size 224 × 224, FC-2 layer used for
feature extraction

I Inception ResNet V2 [2]: Input size 299× 299, avg-
pool layer used for feature extraction

Also, we used two types of datasets:

I a set of 9 different YouTube videos with several viewpoints
from the Boston Marathon bombing attack in 2013;

I a synthetic dataset of almost 800 edited videos coming
from 19 video sequences. For each sequence, we gen-
erated a series of 42 near-duplicate videos obtained by
randomly applying cropping, rotation, flipping, brightness
adjustment, and contrast enhancement.

4. RESULTS ON REAL USE-CASE
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Three examples from Boston Marathon
use-case: (a) fingerprint Fi; (b) fin-
gerprint Fj re-aligned with Fi; (c)
correlation Ci,j enabling the correct
re-alignment, with maximum location
highlighted with a red asterisk; (d) and
(e) estimated pair of aligned frames.

5. RESULTS ON SYNTHETIC DATA

ROC curves showing video detection performance using the pro-
posed method based on different features (i.e., VGG19 and Incep-
tionResNetV2) and the baseline solution based on [3].

Video alignment accuracy considering a maximum accepted error
in frames. VGG19 provides 70% accuracy in terms of perfect
alignment, and more than 90% if a maximum error of 60 frames
(i.e., 2 seconds) is accepted.

Video alignment accuracy considering different features and trans-
formations.

6. CONCLUSIONS AND FUTURE WORK

I Pre-trained CNNs are particularly robust and less prone to
overfitting for this problem

I Good results on synthetic video data motivated us to test the
approach on a real-world use case with promising results

I Future work will be devoted to the use of 3D feature vectors
that capture the temporal evolution of the scene, rather than
working on a frame-by-frame basis.
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