

Learning a Cross-Modal Hashing Network for Multimedia Search

RIQSE

Venice Erin Liong^{1, 3}, Jiwen Lu², Yap-Peng Tan³

¹Interdisciplinary Graduate School (IGS) ³School of Electrical and Electronic Engineering (EEE) Nanyang Technological University, Singapore ²School of Automation Tsinghua University, Beijing, China

Overview

- ✓ Learn compact binary codes for cross-modality multimedia search
- \checkmark We design a deep neural network implementation:
 - ✓ Learns unified binary code discretely and discriminatively through a <u>classification-based hingeloss</u> criterion
 - ✓ Cross-modal hashing network (CMHN), one deep network for each modality, through minimizing the <u>quantization loss</u> between real-valued neural code and binary code, and <u>maximizing the variance</u> of the learned neural codes

Experiments

□ IAPRTC12: 19627 image-sentence pairs. Top 22 frequent labels from the 275 concept. Text feature:BoW 1386 dim

		Method	16 bits	32 bits	64 bits	128 bits
	$I \rightarrow T$	CMFH [7]	0.5601	0.5829	0.6079	0.6179
		LSSH [6]	0.5440	0.5769	0.5964	0.5985
		SePH - km [10]	0.6177	0.6447	0.6500	0.6781
		DisCMH [12]	0.6174	0.6596	0.6503	0.6594
		DNH-C [26]	0.5250	0.5592	0.5902	0.6339
		DVSH [16]	0.5696	0.6321	0.6964	0.7236
		CMHN	0.6483	0.7274	0.7974	0.8251
		CMHN (o)	0.5768	0.7062	0.7780	0.8060
	$T \rightarrow I$	CMFH [7]	0.5592	0.5834	0.6084	0.6187
		LSSH [6]	0.4868	0.5264	0.5547	0.5724
		SePH - km [10]	0.6105	0.6340	0.6404	0.6730
		DisCMH [12]	0.6532	0.6910	0.6921	0.6949
		DNH-C [26]	0.4692	0.4838	0.4905	0.5053
		DVSH [16]	0.6037	0.6395	0.6806	0.6751
		CMHN	0.6687	0.6925	0.7535	0.7925
		CMHN (o)	0.6716	0.6615	0.6677	0.6490

Formulation

Derroblem:

$$f_u : \mathbb{R}^{d_u} \to \{-1, 1\}^K, \quad f_v : \mathbb{R}^{d_v} \to \{-1, 1\}^K$$

□ The objective function of CMHN:

$$\min_{\mathbf{B},\mathbf{M},\theta_u,\theta_v} J = J_1 + \lambda_1 J_2$$

✓ Binary codes (B) by following the assumption that the codes should be able to perform well on <u>a multi-classification problem (using hinge-loss criterion)</u>

$$\min_{\mathbf{B},\mathbf{M}} J_1 = \|\mathbf{M}\|_F^2 + \sum_n^N \xi_n$$
$$\forall n, j \ \mathbf{y}_{n,j}(\mathbf{m}_j^\top \mathbf{b}_n) \ge 1 - \xi_n$$

 Network Parameters θ_u, θ_v by minimizing the quantization loss between neural codes and binary code and maximizes the variances

$$\min_{\theta_u, \theta_v} J_2 = \left(\|\mathbf{B} - \mathbf{H}_u^L\|_F^2 + \|\mathbf{B} - \mathbf{H}_v^L\|_F^2 \right) -\alpha \left(\operatorname{tr}(\mathbf{H}_u^L \mathbf{H}_u^{L^{\top}}) + \operatorname{tr}(\mathbf{H}_v^L \mathbf{H}_v^{L^{\top}}) \right)$$

Optimization

- We perform optimization by fixing the other variables and solving one variable alternatively and iteratively.
- <u>Classification Step</u>: learn the classification matrix (M) by having a support vector machine (SVM) formulation which can solved through a standard solver (libsvm)
- Binary Code Step: learn B by having a binary quadratic problem which can be solved through a linear gradient technique as follows:

$$\mathbf{b}_n = \operatorname{sgn}(\mathbf{y}_n \mathbf{M}^\top + \lambda_1 (\mathbf{h}_{un}^L + \mathbf{h}_{vn}^L))$$

Hash Function Learning Step: learn network parameters by a batch-wise gradient descent method.

□ Implementation details:

- image network pretrained CNN-F up to FC7 + new FC layer + hashlayer (tanh)
- □ Text network FC layers [D 500 K]
- □ Out-of-sample extension:

$$\mathbf{b}_{un} = \operatorname{sgn}(\mathbf{h}_{un}^L), \mathbf{b}_{vn} = \operatorname{sgn}(\mathbf{h}_{vn}^L)$$

□ NUSWIDE: 186577 images-tag pairs . Top 10 frequent concepts from 81 concepts Text feature: BoW 1000 dim

	19				
	Method	16 bits	32 bits	64 bits	128 bits
	CMFH [7]	0.4772	0.5301	0.5763	0.6258
	LSSH [6]	0.5547	0.5734	0.5980	0.5968
	SePH - km [10]	0.6177	0.6447	0.6500	0.6781
$I \rightarrow T$	DisCMH [12]	0.6826	0.7583	0.7752	0.7605
$1 \rightarrow 1$	CAH [15]	0.4920	0.5084	0.5407	0.5628
	DCMH [17]	0.6249	0.6355	0.6720	-
	CMHN	0.7893	0.8170	0.8236	0.8289
	CMHN (o)	0.6558	0.7480	0.7818	0.7614
	CMFH [7]	0.4965	0.5432	0.5995	0.6405
	LSSH [6]	0.5857	0.6242	0.6293	0.6464
	SePH - km [10]	0.6604	0.6766	0.7043	0.7024
$T \rightarrow I$	DisCMH [12]	0.6519	0.7378	0.7535	0.7511
$1 \rightarrow 1$	CAH [15]	0.5019	0.5135	0.5451	0.5800
	DCMH [17]	0.6791	0.6829	0.6906	-
	CMHN	0.6829	0.7469	0.7651	0.7772
	CMHN (o)	0.6643	0.6950	0.7170	0.7062

Acknowledgements

This research was carried out at the Rapid-Rich Object Search (ROSE) Lab at the Nanyang Technological University, Singapore. The ROSE Lab is supported by the Infocomm Media Development Authority, Singapore