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Introduction

e LSTM:

— flexible model to handle a variable-length sequential data in

computer vision applications with lower computation cost.

— powerful tool for facial analysis with fundamental

explanations of their ability to capture sequential patterns.

— more effective than conventional CNNs for several classifi-
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Introduction

Contributions:

1. The development of a LSTM model for video-based face
verification in the wild that achieves verification
accuracy that outperforms state-of-the-art results on
the recently introduced challenging face video database
(Youtube faces).

2. The development of a combined deep CNN model and
LSTM model architecture to obtain improved
spontaneous expression performance demonstrated on
the challenging FER2013 facial expression dataset.

Introduction
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The proposed FaceVideoModel
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pModel

The Proposed Ex
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Stage 01: Deep Conv Net for Feature Extraction
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Method Accuracyx=SE | AUC | EER
LM3L * 81.3£1.2 89.3 | 19.7
DDML (LBP) * 81.3£1.6 88.7 | 19.7
DDML (combined) * 82.3x1.5 90.1 | 18.5
EigenPEP * 84.8t1.4 926 | 155
MMMF Fusion * - 939 | 12.6
DeepFace-Single 914+1.1 96.3 | 8.6
AlexNet+LSTMs (ours) * | 93.2+0.6136 - -

FaceNet 95.12+0.39 - -

Embedding [Learning 97.3 - -

FaceVideoModel (ours) * | 98.71£0.5002 | 99.94 | 1.2

Experimental Results

Experimental Results: FaceVideoModel
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Experimental Results: FaceVideoModel
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Feature Maps from first Conv layer

Experimental Results: ExpModel
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Filter output from first Conv layer

Approach Validation | Test
DLSVM 0.694 0.712
MNL ~0.7 ~(0.72
CNN |[our] 0.650

ExpModel (dense output) [ours] 0.683

ExpModel (last conv output) [ours] 0.667 -
ExpModel (combined) [ours] 0.700 0.715

Experimental Results
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Experimental Results: Expmodel
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Conclusion

* We have shown the power of LSTM Networks to exploit sequential

information for facial analysis in the wild.

 FaceVideoModel achieved 98.70% face verification on YTF database

which is the best performance in the benchmarking exercises.

 ExpModel reported effective performance for spontaneous facial
expression recognition on the FER2013, and our it can yield good

results on controlled CK+ database even with more diverse wild

training set.

 The proposed systems have the potential value within the computer
vision community for more effectively managing unconstrained facial

analysis applications.

Conclusion




