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Motivation

The main goal of this work is to detect and segment objects using only tiny datasets. To this
extent, we propose a new automatic part-based object segmentation algorithm for non-deformable
and semi-deformable objects in natural backgrounds.

Shape Descriptor

I Need shape descriptors that model strong boundaries

I Must be robust to small shape variations

I Can model straight and curved lines

Our shape descriptor is a quantized SIFT descriptor on the ground truth binary masks of the
objects. They are used to generate part-based shape prior for our detection and segmentation
framework.
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More shape descriptor examples
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Detection and Segmentation Framework

Part-based object detection

We use a bag-of-words approach based on Leibe et al. [2] work. Contrarily to standard bag-of-words
approach, codewords extracted solely from the foreground and are not used for any general
representation of an image.

Training

1. Extract foreground features
(Harris-Lagrange + SIFT)

2. Extract shape descriptors

3. Hierarchical clustering (codewords)

4. Keep occurrences
(
lx, ly, s

)

Test

1. Extract features (Harris-Lagrange + SIFT)

2. Compare with codewords

3. Every match votes for an object hypothesis

4. Mean-shift mode estimation to identify
acceptable hypothesis

5. Non-maximum suppression on detections

An object is detected if enough
occurrences vote at the position in the
voting domain (x, y, s)

Segmentation

We frame the segmentation problem as a dense CRF which we solve using the mean field
approximation of Krähenbühl et al. [1].

Energy function:

E(A) = η
∑
xi

ψu(xi|A) + (1− η)
∑
xi,xj

ψp(xi, xj|A)

Unary term:

ψu(xi|A) = λ1ψshape(xi|A) + λ2ψcolor(xi|A) + λ3ψroi(xi|A)

ψshape(xi|A) is created by projecting coherent occurrences υi onto the image domain.

Pairwise term:

ψp(xi, xj|A) =
C∑
m=1

µ(m)(xi, xj|A)k(m)(fi − fj)

Parameters λ1, λ2, λ3, and η are found in validation.

Shape unary Color unary Region-of-interest unary

Combined Segmentation

Experiments

Performance were evaluated on two small image sets with detection and segmentation ground truth: TUDarmstadt
Object Dataset (TUD) [3] and MSRC21 [5].

Evaluation

Datasets:

I TUD and MSRC21 have respectively 100 and 30 images per class.

I We split TUD and MSRC21 in respectively 3 and 5 random folds for each class.

I For TUD sideviews-cars images, we kept mirrored pairs in the same fold.
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Upper bound - Trained on COCO’s full training set

TUD MSRC21

sideviews cars sideviews cows plane cow car bike sheep cat dog

SharpMask 0.40 0.52 0.29 0.71 0.40 0.19 0.48 0.61 0.48

SharpMask + MPN 0.39 0.52 0.29 0.68 0.37 0.18 0.44 0.61 0.45

Our performance - Trained on 32-34 images on TUD and 18 on MSRC21

TUD MSRC21

sideviews cars sideviews cows plane cow car bike sheep cat dog

BSM 0.39 0.48 0.17 0.57 0.18 0.26 0.48 0.22 0.13

I Since SharpMask [4] does not produce any labeling; we funnel its segmentations to a MultiPath Network [6].

I SharpMask without MPN is evaluated on masks which overlap with the ground truth (iou ≥ 0.5).

I mAP measurement uses the PASCAL recall step (0.1) instead of COCO’s (0.01) considering the size of the sets.
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Conclusion

I Perform well on really small sets of data (15-20 training images)

I Tight segmentation

I Good with occluded objects
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