LEARNING TO SEGMENT ON TINY DATASETS: A NEW SHAPE MODEL

Maxime Tremblay and André Zaccarin

Motivation

Part-based object detection We use a **bag-of-words** approach based on Leibe *et al.* [2] work. Contrarily to standard bag-of-words approach, codewords extracted solely from the foreground and are not used for any general representation of an image. Test Training 1. Extract foreground features **1.** Extract features (Harris-Lagrange + SIFT) (Harris-Lagrange + SIFT) 2. Compare with codewords 2. Extract shape descriptors 3. Every match votes for an object hypothesis **3.** Hierarchical clustering (codewords) 4. Mean-shift mode estimation to identify **4.** Keep occurrences (l_x, l_y, s) acceptable hypothesis 5. Non-maximum suppression on detections An object is detected if enough occurrences vote at the position in the voting domain (x, y, s) $v_i = \max_j v_j + \min_j v_j, \quad \text{iff} \sum \sum h_j(k) = 0$ Segmentation We frame the segmentation problem as a dense CRF which we solve using the mean field approximation of Krähenbühl et al. [1]. 0 0 -2 **Energy function:** 0 $E(A) = \eta \sum_{x_i} \psi_u(x_i|A) + (1 - \eta) \sum_{x_i, x_j} \psi_p(x_i, x_j|A)$ Unary term: Ground truth patch Shape descriptor Fg/bg prior $\psi_u(x_i|A) = \lambda_1 \psi_{shape}(x_i|A) + \lambda_2 \psi_{color}(x_i|A) + \lambda_3 \psi_{roi}(x_i|A)$ $\psi_{shape}(x_i|A)$ is created by projecting coherent occurrences v_i onto the image domain. Pairwise term: 1 1 / Parameters λ_1 , λ_2 , λ_3 , and η are found in validation. 0 0 -1 -2 0 0 0 0 0 1 1 2 0 More shape descriptor examples Region-of-interest unary Color unary Shape unary Dense CRF Models'. *IVC*, 2002. CVPR. 2006. Combined Segmentation

- Must be robust to small shape variations
- Can model straight and curved lines

The main goal of this work is to **detect** and **segment** objects using only **tiny datasets**. To this extent, we propose a new automatic part-based object segmentation algorithm for non-deformable and semi-deformable objects in natural backgrounds. Shape Descriptor ► Need shape descriptors that model strong boundaries Our shape descriptor is a quantized SIFT descriptor on the ground truth binary masks of the objects. They are used to generate part-based shape prior for our detection and segmentation framework. **Quantization: Foreground/background prior:** Propagation to isolated cell: References P. Krähenbühl and V. Koltun. Parameter Learning and Convergent Inference for Dense Random Fields. *ICML*. 2013. B. Leibe, et al. Robust Object Detection with Interleaved Categorization and Segmentation. IJCV, 2008. D. R. Magee and R. D. Boyle. Detecting Lameness Using 'Re-sampling Condensation' and 'Multi-Stream Cyclic Hidden Markov P. O. Pinheiro, et al. Learning to Refine Object Segments. ECCV. 2016. J. Shotton, et al. TextonBoost: Joint Appearance, Shape and Conext Modeling for Muli-class object Recognition and Segmentation. S. Zagoruyko, *et al.* A MultiPath Network for Object Detection. *BMVC*. 2016.

$$\mathcal{D}_k(i) = \frac{\operatorname{sgn}\left(\frac{d_k(i)}{m} - 1\right) + 1}{2}, \quad m = \beta \max_i d_k(i)$$

$$v_k(i) = \sum_{j=0}^7 h_j((j+4) \mod 8) - h_j(j), \quad \text{if } \sum_{k=0}^7 h_i(k) = 0$$

1	~					
\land		_	^			
^	<u>\</u>		\land			
		^	1			
Ground truth SIFT						

Ι			
I	1	7	
		7	1
		_	—
0	0	-1	-1
0	0	0	-3
2	3	0	0
3	2	0	0

Ι			Ι
			Ι
-1	-1	-1	-1
0	0	0	0
0	0	0	0
1	1	1	1

Ι	/			
	X	1	1	
Ι	\checkmark	Y	1	
		_	7	
0	0	-1	-2	
0	0	0	0	
0	0	0	0	
-2	-2	0	0	

	7			
	7	7		
	7	7		
	7			
_				
	0	-2	-1	
	0	0	-1	
	0	0	-1	
	0	-2	-1	

Department of Electrical and Computer Engineering, Université Laval, Québec (QC) Canada

Detection and Segmentation Framework

$$\psi_p(x_i, x_j | A) = \sum_{m=1}^C \mu^{(m)}(x_i, x_j | A) k^{(m)}(f_i)$$

$$-f_j$$

Experiments

Performance were evaluated on two small image sets with detection and segmentation ground truth: TUDarmstadt Object Dataset (TUD) [3] and MSRC21 [5].

Evaluation

Datasets:

- ► TUD and MSRC21 have respectively 100 and 30 images per class.
- ▶ We split TUD and MSRC21 in respectively 3 and 5 random folds for each class.
- ► For TUD *sideviews-cars* images, we kept mirrored pairs in the same fold.

: Foreground

Upper bound - Trained on COCO's full training set

TUD		MSRC21							
	sideviews cars	sideviews cows	plane	COW	car	bike	sheep	cat	dog
SharpMask	0.40	0.52	0.29	0.71	0.40	0.19	0.48	0.61	0.48
SharpMask + MPN	0.39	0.52	0.29	0.68	0.37	0.18	0.44	0.61	0.45
Our performance - Trained on 32-34			imag	ges	on T	UD	and	18 0	on MSRC21
TUD			MSRC21						
sideviews cars sideviews cows			plane	COW	car	bike	sheep	cat	dog

	TUD		MSRC21						
	sideviews cars	sideviews cows	plane	COW	car	bike	sheep	cat	dog
SharpMask	0.40	0.52	0.29	0.71	0.40	0.19	0.48	0.61	0.48
SharpMask + MPN	0.39	0.52	0.29	0.68	0.37	0.18	0.44	0.61	0.45
Our performance - Trained on 32-34			imag	ges	on T		and	18 0	on MSRC21
TUD			MSRC21						
	sideviews cars	sideviews cows	plane	COW	car	bike	sheep	cat	dog
BSM	0.39	0.48	0.17	0.57	0.18	0.26	0.48	0.22	0.13

▶ Since SharpMask [4] does not produce any labeling; we funnel its segmentations to a MultiPath Network [6]. \blacktriangleright SharpMask without MPN is evaluated on masks which overlap with the ground truth ($iou \ge 0.5$). ▶ mAP measurement uses the PASCAL recall step (0.1) instead of COCO's (0.01) considering the size of the sets.

: Foreground

Conclusion

Perform well on really small sets of data (15-20 training images)

- Tight segmentation
- Good with occluded objects

This work was supported through funding from Auto21 (Canada) and the REPARTI strategic center (FRQ-NT, Québec).

: Background

: Background