AN EFFICIENT DEEP NEURAL NETWORKS TRAINING FRAMEWORK FOR ROBUST FACE RECOGNITION Canping Su¹, Yan Yan^{1,*}, Si Chen², Hanzi Wang¹

(2)

Introdution

We propose an efficient deep neural networks training framework for face recognition. The framework contains two stages:

- ✓ The DNN initialization. A deep architecture based on the softmax loss function is designed to initialize the DNN.
- \checkmark The adaptive fine-tuning. The formulation is described as follow.

$$Loss = \sum_{i=1}^{N} \max\left(err(S_i), 0\right)$$
(1)

$$err(S_i) = D_{ap_i} + \frac{D_{max}}{\sqrt[n]{D_{ap_i}}} \tau - D_{an_i}$$

The completed method

Algorithm 1: An Efficient DNN Training Framework Input: Training dataset S, sampling interval K, and maximal epoch TOutput: The trained network parameters W 1 Initialization: Randomize W, $\mathcal{T} = \emptyset$, t = 1; 2 while not converge do // The DNN initialization for each training sample $x_i \in S$ do Forward pass to obtain the face representation; Backpropagate to update the network parameters W via the original softmax. end end s while t < T do // The adaptive fine-tuning if t mod K then // Generate triplet samples Generate positive pair (x_i^a, x_i^p) according the current model parameters W; Select the negative sample x_i^n via Eq. (2); $\mathcal{T} = \mathcal{T} \cup (x_i^a, x_i^p, x_i^n);$ 12 end 13 for each triplet sample $(x_i^a, x_i^p, x_i^n) \in \mathcal{T}$ do 14 Forward pass to obtain the face representation; 15 Backpropagate to update the network parameters W via Eq. (1); end $t \leftarrow t + 1;$ 18 19 end

¹Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China ²School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

> Fig. 1. The schematic diagram of the proposed training framework.

Method	FERET	MultiPIE	FEI	Carmera 12
DAE [2]	84.80%	82.50%	N/A	N/A
SPAE [3]	92.50%	91.40%	N/A	N/A
Softmax	99.96%	97.26%	98.72%	98.44%
Proposed method	99.99%	99.31%	99.96%	99.52%

Fig. 2. Performance on the LFW dataset.

- Table 1. The training time
- obtained by the different methods

d	Time (hours)
X	24
	Failed (more than 168)
[1]	more than 1000
nethod	96

Conclusions

- \succ In this paper, a novel DNN training framework, which takes advantage of both the softmax loss and triplet loss functions, has been proposed for efficient face recognition.
- > A specific softmax loss-based DNN architecture is designed to initialize the DNN. Based on it, we improve the discrimination capability of the DNN with a triplet loss function, where an adaptive margin is adopted.
- > We have verified the effectiveness of the proposed DNN training framework on the LFW dataset and four different face datasets.

Table 2. The recognition accuracy on the different datasets.

References

- [1] Florian Schroff, Dmitry Kalenichenko, and James Philbin, "Facenet: A unified embedding for face recognition and clustering," in CVPR, 2015, pp. 815-823.
- Yoshua Bengio, "Learning deep architectures for ai," [2] FTML, vol. 2, no. 1, pp. 1–127, 2009.
- [3] Meina Kan, Shiguang Shan, Hong Chang, and Xilin Chen, "Stacked progressive auto-encoders (spae) for face recognition across poses," in CVPR, 2014, pp. 1883–1890.

Contact us

yanyan@xmu.edu.cn

