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Motivation

� Dense small-cell deployment has been identified as one of
the ‘big pillars’ to support the much needed 1,000× increase
in data throughput for the 5G wireless networks

� While there is a major concern with the energy consumption
of such a dense small-cell deployment, recent advances in
wireless power transfer allow the emitted energy in the radio
frequency (RF) signals to be harvested and recycled.

� The simultaneous wireless information and power
transfer (SWIPT) from a BS to its UEs is viable in a dense
small-cell environment because of the close BS-UE proximity.
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Motivation (contd.)

� In such multicell network with SWIPT, the joint design of
transmit beamformers at the base stations (BSs) and receive
power splitting (PS) ratios at the users (UEs) is a nonconvex
challenging problem.

� The semidefinite programming relaxation (SDR) may even fail
to locate a feasible solution due to inevitable rank-one matrix
constraints.

� We have therefore, proposed a new iterative optimization
approach that offers maximized minimum SINR among all
UEs.
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System Model
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Figure: Downlink multiuser multicell interference scenario in a dense
network consisting of K small cells and Nk single-antenna UEs in cell k.
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Received Signal

yk,n = hH
k,k,nwk,nxk,n + hH

k,k,n
∑

n̄∈Nk\{n}
wk,n̄xk,n̄

+
∑

k̄∈K\{k}
hH

k̄,k,n
∑

n̄∈Nk̄

wk̄,n̄xk̄,n̄ + za
k,n

� The first term in is the intended signal for UE (n,k), the
second term is the intracell interference from within cell k,
and the third term is the intercell interference from other cells
k̄ ∈ K\{k}.

� wk,n ∈ CM×1 is the beamforming vector by BS
k ∈ K , {1, . . . ,K} for its UE (k,n).

� By BS k and UE (k,n), we mean the BS that serves cell k and
the UE n ∈Nk , {1, . . . ,Nk} of the same cell, respectively.
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Figure: PS-based receiver structure at UE (k,n).

� The power splitter (PS) divides the received signal yk,n into
two parts in the proportion of αk,n : 1−αk,n, where
αk,n ∈ (0,1) is termed as the PS ratio for UE (k,n).
� The first part √αk,nyk,n forms an input to the information

decoding (ID) receiver. The second part
√
1−αk,nyk,n of the

received signal is processed by an energy harvesting (EH)
receiver.
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SINR at ID receiver
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SINRk,n = fk,n(w,αk,n)
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k,k,nwk,n|2

αk,n
∑

n̄∈Nk\{n}

|hH
k,k,nwk,n̄|2
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+αk,n
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︸ ︷︷ ︸
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+αk,nσ
2a +σ2c

.

(1)
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Harvested Energy by EH Receiver
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� ζk,n ∈ (0,1) is the energy harvesting efficiency.
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Max-Min SINR Problem

max
wk,n∈CM×1,
αk,n∈(0,1),
∀ k∈K, n∈Nk

F (w,α) , min
k∈K,n∈Nk

fk,n(w,αk,n) (3a)

s.t.
∑

n∈Nk

‖wk,n‖2 ≤ Pmax
k , ∀k ∈ K (3b)

∑
k∈K

∑
n∈Nk

‖wk,n‖2 ≤ Pmax (3c)

Ek,n(w,αk,n)≥ emin
k,n , ∀k ∈ K,n ∈Nk , (3d)

� Pmax
k is the transmit power budget of each BS k. Pmax is the

budget for total transmit power of the network.
� emin

k,n is the target harvested energy.
� (3) is a nonconvex nonsmooth (due to minimization operator)
optimization function subject to nonconvex constraint (3d).
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Semidefinite Programming (SDP)
By defining Wk,n , wk,nwH

k,n < 0 and Hk,k,n , hk,k,nhH
k,k,n,

max
Wk,n∈CM×M

αk,n∈(0,1),γ

γ (4a)

s.t.
1
γ
Tr{Hk,k,nWk,n}−

∑
k̄∈K\{k}

∑
n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄}−
∑

n̄∈Nk\{n}

Tr{Hk,k,nWk,n̄} ≥ σ2a +
σ2c
αk,n

,

(4b)∑
n∈Nk

Tr{Wk,n} ≤ Pmax
k , ∀k ∈ K (4c)

∑
k∈K

∑
n∈Nk

Tr{Wk,n} ≤ Pmax (4d)

∑
k̄∈K

∑
n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄} ≥
emin

k,n

ζk,n(1−αk,n)
−σ2a , ∀k,n (4e)

Wk,n < 0, ∀k ∈ K,n ∈Nk (4f)
rank(Wk,n) = 1, ∀k ∈ K,n ∈Nk . (4g)
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Semidefinite Relaxation (SDR)

� By fixing γ and further ignoring the difficult rank-one
constraint (4g), (4) becomes a feasibility (convex)
semidefinite relaxation (SDR) (4b)–(4f).
� The optimal value of γ can be found via a bisection search.
� If rank(W?

k,n) = 1, ∀k ∈ K,n ∈Nk , the rank-one constraint
(4g) is automatically satisfied.
� Problem: rank(W?

k,n)> 1 for some (k,n) in more than 38%
of the time. Thus, solving SDR is not adequate to recover
optimal beamforming vectors. Only provides upper bound.
� Existing Approach: Randomization ∗, however, the
generated solutions are not guaranteed to be even close to the
actual optimum of problem

∗N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beamforming for physical-layer multicasting,"
IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2239Ű2251, Jun. 2006.
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Dealing with Rank-1 Constraints

� Denoting λmax{·} as a maximum eigenvalue of a matrix, we
can replace the rank-one matrix constraints (4g) by a single
reverse convex constraint.

∑
k∈K

∑
n∈Nk

[Tr{Wk,n}−λmax{Wk,n}]≤ 0, ∀k,n. (5)

� If (5) holds then Tr{Wk,n}−λmax{Wk,n}= 0 for all k ∈ K
and n ∈Nk , which means that each Wk,n has exactly one
nonzero eigenvalue.
� (5) is a reverse convex constraint because the function
λmax{·} is convex on the set of Hermitian matrices.
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Dealing with Rank-1 Constraints (contd.)

� Our aim is thus to make∑
k∈K

∑
n∈Nk

[Tr{Wk,n}−λmax{Wk,n}] as small as possible.
� To this end, we incorporate the reverse convex constraint (5)
into the objective as a penalty function.

min
Wk,n∈CM×M

αk,n∈(0,1)

F̃ (W) ,
∑
k∈K

∑
n∈Nk

Tr{Wk,n}−λmax{Wk,n}

s.t. (4b)− (4f). (6)
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Dealing with Rank-1 Constraints (contd.)

� Since the subgradient of λmax{Wk,n} is wmax
k,n (wmax

k,n )H†, we
have

λmax{Xk,n} ≥ λmax{Wk,n}+ (wmax
k,n )H(Xk,n−Wk,n)wmax

k,n , ∀k,n
(7)

� for any Xk,n < 0.
� wmax

k,n is the unit-norm eigenvector corresponding to the
maximum eigenvalue λmax{Wk,n}.

†H. D. Tuan, P. Apkarian, S. Hosoe, and H. Tuy, “D.C. optimization approach to
robust control: Feasibility problems," Int. J. Contr, vol. 73, no. 2, pp. 89Ű-104, Feb.
2000.
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Dealing with Rank-1 Constraints (contd.)
Given some feasible W(κ)

k,n of (6) at iteration κ with the
corresponding maximum eigenvalue λmax{W(κ)

k,n} and unit-norm
eigenvector wmax,(κ)

k,n ,

F̃ (κ)(W) ,
∑
k∈K

∑
n∈Nk

Tr{Wk,n}−λmax{W(κ)
k,n}

− (wmax,(κ)
k,n )H(Wk,n−W(κ)

k,n)wmax,(κ)
k,n (8)

≥ F (W), ∀W

Thus, the following SDP

min
Wk,n∈CM×M

αk,n∈(0,1)

F̃ (κ)(W) s.t. (4b)− (4f). (9)

is a convex majorant minimization of the nonconvex program (6).
ICT 2015 16/23



Motivation System Model & Problem Formulation Proposed Solution Numerical Results

Dealing with Rank-1 Constraints (contd.)
Given some feasible W(κ)

k,n of (6) at iteration κ with the
corresponding maximum eigenvalue λmax{W(κ)

k,n} and unit-norm
eigenvector wmax,(κ)

k,n ,

F̃ (κ)(W) ,
∑
k∈K

∑
n∈Nk

Tr{Wk,n}−λmax{W(κ)
k,n}

− (wmax,(κ)
k,n )H(Wk,n−W(κ)

k,n)wmax,(κ)
k,n (10)

≥ F (W), ∀W

Thus, the following SDP

min
Wk,n∈CM×M

αk,n∈(0,1)

F̃ (κ)(W) s.t. (4b)− (4f). (11)

is a convex majorant minimization of the nonconvex program (6).
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Dealing with Rank-1 Constraints (contd.)

Program (11) can be further simplified to:

min
Wk,n∈CM×M

αk,n∈(0,1)

∑
k∈K

∑
n∈Nk

Tr{Wk,n}−(wmax,(κ)
k,n )HWk,nwmax,(κ)

k,n

s.t. (4b)− (4f). (12)

With (12), we then propose to use a bisection search in an outer
loop to find the optimal value of γ.
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Proposed Algorithm

� We choose the initial solution (W(0)
k,n,α

(0)
k,n) as the optimal

solution (W?
k,n,α

?
k,n) of SDR (4a)-(4f).

� The Optimization stage ensures a rank-one solution. In the
Optimization stage, the inner loop optimizes
Wk,n,αk,n, ∀k ∈ K,n ∈Nk for a given value of γ by solving
exactly one convex SDP (12) in each iteration. The inner loop
terminates at the convergence of the objective function in (12)
or equivalently F̃ (W) (maximum of 2 iterations required).
� Once F̃ (W) converges, we determine the rank of the
optimized beamforming matrices W(κ)

k,n. If
Tr{W(κ)

k,n} ≈ λmax{W(κ)
k,n}, i.e.,

rank(W(κ)
k,n) = 1, ∀k ∈ K,n ∈Nk , we update γlo := γ, and

otherwise we set γhi := γ. The outer loop optimizes γ via a
simple bisection search.
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Multicell Network Topology

� Cell radius = 40 m, BS-UE distance = 20 m, ζ = 0.5,
Pmax = 22 dBW, Pmax

k = 16 dBW, emin =−20 dBm, δ = 1,
σ2a = σ2c =−90 dBm, Rician fading channel with Rician factor
= 10 dB.
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Convergence of the Proposed Algorithm
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Comparison with Randomization and Upper Bound SDR
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Findings

� We observe that solving an SDR fails to deliver a rank-one
solution in 38.3% of the time on average while the proposed
Algorithm 1 always deliver a rank-one solution. In our
simulations, we establish that a matrix is only of rank one if
the magnitude of its second largest eigenvalue is less than
ρ= 1/200 of that of its largest eigenvalue. Since this criterion
is much more relaxed than conventionally where ρ is much
smaller, it ensures that a rank-one matrix is not mistaken.

� The optimal solution provided by our SDP-based spectral
optimization achieves the theoretical bound.
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