TOWARDS THINNER CONVOLUTIONAL NEURAL NETWORKS

THROUGH GRADUALLY GLOBAL PRUNING

ABSTRACT

Convolutional neural networks (CNNs) are always
trapped by their huge amount of parameters when
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EXPERIMENT RESULTS
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for “proportional pruning neurons in each layer, not

problem, we propose a pruning scheme for neuron level - The imbalance of scores in different layers -
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evaluation)

5. Select N xr neurons to be prune, where /V 1s the num-
ber of neurons in current model
6:  Drop the selected neurons in the network, get M g0y,
update M by Mg,op
Sr(Li1) =X Ry 7. Fine-tune M with training set X
- Standard derivation of activations: 8:  Update P, by the performance of M over V

9: end while
N R%-—ﬁ 10: ,
S (L) :\/ ]_1(N, ) 10: return M

* [ = layer index,i = neuron index, N = #neurons in a layer

- Mean of activations:




