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Summary e Number of users: 27 users with variations in surroundings, clothing, lighting and gesture move-
We look at the problem of developing a compact and accurate model for gesture recognition from videos in a ment.
deep-learning framework. Towards this we propose a joint 3DCNN-LSTM model that is end-to-end trainable and 1s
shown to be better suited to capture the dynamic information in actions. The solution achieves close to state-of-the- e Recording Device: Microsoft Kinect. Data contains RGB, depth, user mask and skeleton/joint
art accuracy on the ChalLearn dataset, with only half the model size. We also explore ways to derive a much more information for each frame of video.

compact representation in a knowledge distillation framework followed by model compression. The final model is
less than 1 M B in size, which is less than one hundredth of our initial model, with a drop of 7% in accuracy, and is

suitable for real-time gesture recognition on mobile devices. :
Motivation A\ \

e Gesture recognition 1s one of the key components in natural human-computer interfaces, especially
for mobile devices.

Figure 4: Example frame modalities from the dataset

e Challenges: Background inconsistencies, user-level variations in gesturing, different user appear-

ance, pose. e For each video frame we use the depth and grayscale to obtain two-channel inputs for our models.
e Existing Approaches e Upper-body region and the highest hand region for each gesture are cropped out using skeleton
information.

— Distill the video into an image using: 1) Features that capture temporal information [1], or com-
puting optical flow [7], and use image classification models. e We also perform rotation, translation and zooming on the frames for data augmentation.

— Use of models better suited to capture temporal information: 1) 3D-CNN [4] and 2) recurrent
networks such as LSTM [3].

e Combining 3D-CNN with LSTM leads to models that are accurate and robust enough to handle the
complex variations present in the videos.

e Using knowledge distillation, we develop compact models, that can be further compressed, with
minimal 1mpact on accuracy to make them suitable for mobile devices.

Our Approach

Figure 5: Input frames to our models

Baseline Models

As baseline models we use a 3D-CNN and an LSTM variant of RNN to classify each gesture.
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Figure 1: 3D-CNN architecture R 512 &
Table 1: Accuracies obtained using our model compared with state-of-the-art methods
Figure 2: LSTM architecture
# of parameters
Model (in millions) Trained using Accuracy(%)
. Original | 3D-CNN + LSTM 18.37 class labels 93.18
Joined 3D-CNN and LSTM Teacher 3D-CNN 18.82 class labels 90.13
: : 3D-CNN + LSTM class labels 86.18
Next we Cmelne the 3D-CNN with LSTM. The 3D-CNN acts as. ap encoder for groups of few o (medium) 4.59 class labels and softmax output of feacher R8.35
frames, which are fed as sequences to the LSTM to get the final prediction. fudent x5 NN + LSTM . class labels 31,50
(small) ' class labels and softmax output of feacher 86.05
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- Table 2: Knowledge Distillation from baseline 3D-CNN to CNN + LSTM
el E A > > > [ LT e Training with Adam optimizer compresses the model further by pushing most of the parameters of
2X4X64X64 F32X2X16X16 128X 1X4X4 512X1X1X1 L the Student towards Very low Weight'
' _ e Removing weights having magnitude below 2—100 got rid of ~ 905K parameters out of 1.15M, of
For subsequent blacks of frames j our small student network with no drop 1n accuracy.
foxaxszX2 exaxaxs 2exIx2x2 ] — Method # of parameters Single-precision Half-precision
ot 256 (in millions) | Model size (MB) | Accuracy(% ) | Model size (MB) | Accuracy(%)
r T > P> e 1. Teacher 3D-CNN 18.82 72 90.13 36 89.5
2X4X64X64 32X2X 16X 16 128 X 1 X4 X 4 512X1X1X1| | - 2. Orlgmal 3D-CNN + LSTM 18.37 71 93.18 39.9 93.18
° 3. Student 3D-CNN + LSTM 1.15 4.5 86.05 2.25 85.98
4. Sparse model of (3) 0.25 1.12 86.05 0.635 85.98

Figure 3: Joined 3D-CNN and LSTM architecture

Table 3: Reduction is size along with performance impact of the student model and sparse model.

Knowledge Distillation from Baseline 3D-CNN Model to Joined Model

We use our trained baseline CNN as a teacher to train much smaller variants of our joined 3D-CNN
and LSTM models. Softened softmax output for each training sample is obtained from the trained

Conclusions

e Joint 3D-CNN and LSTM model for gesture recognition from videos, leverages the best of both

3D-CNN architecture using: 3D convolution and recurrent network to model the sequential evolution of information in a video,
e% while allowing to process arbitrary length videos.

b = Z; Vi € {1,...c}, (1) e Information can be distilled from a larger model to models with 16x and 4 x fewer parameters. To
25:1 eT the best of our knowledge, this 1s the first work exploring the knowledge distillation framework for

where c 1s the number of classes and 7' 1s the temperature, set depending on how “soft” we want the videos.
distribution to be. e The model size could be further reduced using a sparse representation. This benefits training time

Smaller variants of the joined model are trained using the following loss function: and also makes it possible to use them in low-memory and low-power embedded devices.
L = aLBoft) 4 (1 — q)rthard) (2)
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