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Introduction Proposed Algorithm Experimental Results

• In CNNs training, the impacts of objective functions on the performance of 

deep-learning-based algorithms is as enormous as the network architecture

• 3D MR image has severe inter-intra variations that hinder the network from 

learning dataset

• 3D Fully convolutional network architecture which adapts the feature 

forwarding method is reliably trained with various objective functions

• Cosine similarity function is the best for training the 3D MR prostate image 

while various objective functions achieve remarkable performance

Related Work

1) 3D MR Prostate Image Segmentation

• Malmberg et al. propagate initial user annotations from seed voxels to 

others [1]

• Tian et al. over-segment each image slice into super-pixels, and then 

dichotomize the super-pixels in to either prostate or non-prostate class 

based on the graph-cut optimization [2]

• Vincent et al. construct a generative prostate model using appearance, 

position, and texture features [3]

3) CNN-based Image Segmentation

• Milletari et al. ameliorated the Ronneberger’s algorithm with 3D convolutional 

layers and objective function which optimizes dice similarity [7]

• Yu et al. adopted the residual feature forwarding and perform the sliding 

window sampling to obtain segments statistically [8]

2) Deep Convolutional Neural Network

• Dai et al. proposed the fully convolutional network (FCN) for the image 

segmentation algorithms [4]

• He. Et al. provided the reliable training method that forwards the 

intermediate features [5]

• Ronneberger et al. adapted the encode-decode architecture and improved 

the performance with feature forwarding method [6]

Algorithm Objective function Score

BCNN

Hamming distance 0.8366

Euclidean distance 0.8467

Jaccard similarity 0.8291

Dice coefficient 0.8507

Cosine similarity 0.8537

Cross entropy 0.8275

[8] Cross entropy 0.8693
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The architecture of the proposed BCNN, which uses the encoding, bridge, decoding, and classification modules.

 3D MR Prostate Image Dataset Base Network and objective functions

Objective function OTUs Definition Gradients

Hamming Distance b + c ෍
i=1

N

pi
2 + qi

2 − 2piqi 2 pj − qj

Euclidean Distance b + c ෍
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N
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• We construct the baseline convolutional neural network (BCNN) with encode-

decode architecture including feature forwarding technique

• The network consists of 3D convolutional, pooling, and deconvolutional 

layers that process the 3D input data at once

• BCNN learns the given dataset with various objective functions as follow

• Total 50 MR prostate images are given with GT

• The outlines of the prostate are depicted in yellow

• We evaluate algorithms with 10-fold cross validation

• Available: https://promise12.grand-challenge.org

PROMISE12

Table 1. Objective functions used in training:
pi, qi are estimated results and ground-truth respectively

Table 2. Quantitative results:
The score is Dice coefficient between results and ground-truth

Qualitative comparison of the six objective functions for training the proposed BCNN.

The yellow and red boundaries outline the ground-truth and predicted prostate segments, respectively

 Qualitative and Quantitative Results

(a) Cross entropy (b) Jaccard index (c) Hamming distance (d) Euclidean distance (e) Dice coefficient (f) Cosine similarity


