A Prarallel Linearized ADMM with Application to Multichannel TGV-Based Image Restoration

Chuan He, Changhua Hu

the High-tech Institute of Xi'an

Xuelong Li

Xi'an Institute of Optics and Precision Mechanics

- Introduction
- Proposed Method
- Multichannel TGV-Based Image Restoration
- Concluding Remarks

Introduction

The key to the success of image restoration:

- Regularization model incorporating image prior knowledge
- > Automatic, accurate, concise, and fast solution algorithm

Introduction

Convex Objective Function for Imaging Inverse Problems:

$$\min_{\boldsymbol{x}\in X} g(\boldsymbol{x}) + \sum_{h=1}^{H} f_h(\boldsymbol{L}_h \boldsymbol{x})$$
(1)

- > g and f_h are convex functions whose proximity operators possess closed-forms or at least can be solved efficiently by existent methods;
- $\succ L_h$ is a bounded linear operator with adjoint L_h^* .

The solution of (1) usually suffers from two aspects:

> Data space *X* in a practical application is typically of high dimension;

> Function g and the linear-operator-coupled f_h may be nondifferentiable.

Introduction

Our Strategy-Parallel LADMM with "full splitting":

$$\min_{\boldsymbol{x}\in X} g(\boldsymbol{x}) + \sum_{h=1}^{H} f_h(\boldsymbol{L}_h \boldsymbol{x})$$
(1)

- At each iteration, only the proximity operators of the convex functions and the linear operators are involved. It possesses a highly parallel structure and can be accelerated by parallel calculation techniques.
- The linear inverse operator, which usually exists in methods dealing with inverse problems. is excluded. It is not partial to a particular data boundary condition.
- It achieves a worst-case O (1/k) convergence rate by exploiting only the first-order information of the functions.

Proposed Method

Similar to ADMM, the AL functional of (1) is as follows

$$\mathcal{L}_{\mathcal{A}}\left(\boldsymbol{x},\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{H};\boldsymbol{v}_{1},\ldots,\boldsymbol{v}_{H}\right) = g\left(\boldsymbol{x}\right) + \sum_{h=1}^{H} \left(f_{h}\left(\boldsymbol{a}_{h}\right) + \left\langle\boldsymbol{v}_{h},\boldsymbol{L}_{h}\boldsymbol{x}-\boldsymbol{a}_{h}\right\rangle + \frac{\beta_{h}}{2} \left\|\boldsymbol{L}_{h}\boldsymbol{x}-\boldsymbol{a}_{h}\right\|_{2}^{2}\right). \quad (2)$$

 \succ v_h is the Lagrange multiplier and $\beta_h > 0$ is the penalty parameter.

The proposed PLADMM finding the saddle point of (2):

$$\begin{aligned} \boldsymbol{a}_{h}^{k+1} &= \operatorname{prox}_{f_{h}/\beta_{h}} \left(\boldsymbol{L}_{h} \boldsymbol{x}^{k+1} + \frac{\boldsymbol{v}_{h}^{k}}{\beta_{h}} \right) \quad h = 1, \dots, H; \\ \boldsymbol{v}_{h}^{k+1} &= \boldsymbol{v}_{h}^{k} + \beta_{h} \left(\boldsymbol{L}_{h} \boldsymbol{x}^{k+1} - \boldsymbol{a}_{h}^{k+1} \right) \quad h = 1, \dots, H; \\ \boldsymbol{x}^{k+1} &= \operatorname{prox}_{tg} \left(\boldsymbol{x}^{k} - t \sum_{h=1}^{H} \beta_{h} \boldsymbol{L}_{h}^{*} \left(\boldsymbol{L}_{h} \boldsymbol{x}^{k} - \boldsymbol{a}_{h}^{k+1} + \frac{\boldsymbol{v}_{h}^{k+1}}{\beta_{h}} \right) \right), \quad 0 < t \leq \left(1 / \sum_{h=1}^{H} \beta_{h} \left\| \boldsymbol{L}_{h}^{*} \boldsymbol{L}_{h} \right\| \right). \end{aligned}$$

Proposed Method

With the Moreau decomposition in convex analysis:

$$\operatorname{prox}_{\beta f^*} \boldsymbol{v} = \boldsymbol{v} - \beta \operatorname{prox}_{f/\beta} \left(\boldsymbol{v} / \beta \right)$$

The iterative scheme of PLADMM is transformed into:

$$\begin{cases} \boldsymbol{v}_{h}^{k+1} = \operatorname{prox}_{\beta_{h}f_{h}^{*}} \left(\beta_{h}\boldsymbol{L}_{h}\boldsymbol{x}^{k+1} + \boldsymbol{v}_{h}^{k}\right) & h = 1, \dots, H; \\ \boldsymbol{x}^{k+1} = \operatorname{prox}_{tg} \left(\boldsymbol{x}^{k} - t\sum_{h=1}^{H} \boldsymbol{L}_{h}^{*} \left(2\boldsymbol{v}_{h}^{k+1} - \boldsymbol{v}_{h}^{k}\right)\right), \quad 0 < t \leq \left(1 / \sum_{h=1}^{H} \beta_{h} \left\|\boldsymbol{L}_{h}^{*}\boldsymbol{L}_{h}\right\|\right). \end{cases}$$

Proposed Method

- According to the convergence analysis of LADMM (Theorem1 in the paper)
- $\{\boldsymbol{x}^{k}, \boldsymbol{a}_{1}^{k}, \dots, \boldsymbol{a}_{H}^{k}; \boldsymbol{v}_{1}^{k}, \dots, \boldsymbol{v}_{H}^{k}\}$ converges to a saddle point of
- $\mathcal{L}_{\mathcal{A}}(\boldsymbol{x},\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{H};\boldsymbol{v}_{1},\ldots,\boldsymbol{v}_{H});$
- $\{x^k\}$ converges to a solution of problem (1);

PLADMM possesses a worst-case O(1/k) convergence rate.

Objective Function: $(\boldsymbol{u}^*, \boldsymbol{p}^*) = \arg\min \alpha_1 \|\nabla \boldsymbol{u} - \boldsymbol{p}\|_1 + \alpha_2 \|\mathcal{E}\boldsymbol{p}\|_1$ s.t. $\left\{ \boldsymbol{u} \in \Omega \triangleq \left\{ \boldsymbol{u} : \boldsymbol{0} \leq \boldsymbol{u} \leq 255 \right\} \cap \Psi \triangleq \left\{ \boldsymbol{u} : \left\| \boldsymbol{K} \boldsymbol{u} - \boldsymbol{f} \right\|_{2}^{2} \leq c \right\}.$ PLADMM $\begin{cases} \boldsymbol{v}_{1,i,j,l}^{k+1} = P_{B_{\alpha_1}} \left(\beta_1 \left(\left(\nabla \boldsymbol{u}^k \right)_{i,j,l} - \boldsymbol{p}_{i,j,l}^k \right) + \boldsymbol{v}_{1,i,j,l}^k \right) \\ \boldsymbol{v}_{2,i,j,l}^{k+1} = P_{B_{\alpha_2}} \left(\beta_2 \left(\mathcal{E} \boldsymbol{p}^k \right)_{i,j,l} + \boldsymbol{v}_{2,i,j,l}^k \right) \\ \boldsymbol{v}_{3}^{k+1} = \beta_3 S_{\sqrt{c}} \left(\frac{\boldsymbol{v}_{3}^k}{\beta_3} + \boldsymbol{K} \boldsymbol{u}^k - \boldsymbol{f} \right) \end{cases}$ $\widetilde{\boldsymbol{v}}_{h}^{k+1} = 2\boldsymbol{v}_{h}^{k+1} - \boldsymbol{v}_{h}^{k}$ $\boldsymbol{\mu}^{k+1} = P_{\Omega} \left(\boldsymbol{\mu}^{k} - t \left(\nabla^{T} \tilde{\boldsymbol{\nu}}_{1}^{k+1} + \boldsymbol{K}^{T} \tilde{\boldsymbol{\nu}}_{3}^{k+1} \right) \right)$ $\boldsymbol{p}_{1}^{k+1} = \boldsymbol{p}_{1}^{k} - t \left(\nabla^{T}_{1} \tilde{\boldsymbol{\nu}}_{2,1}^{k+1} + \nabla^{T}_{2} \tilde{\boldsymbol{\nu}}_{2,3}^{k+1} - \tilde{\boldsymbol{\nu}}_{1,1}^{k+1} \right)$ $\boldsymbol{p}_{2}^{k+1} = \boldsymbol{p}_{2}^{k} - t \left(\nabla^{T}_{1} \tilde{\boldsymbol{\nu}}_{2,3}^{k+1} + \nabla^{T}_{2} \tilde{\boldsymbol{\nu}}_{2,2}^{k+1} - \tilde{\boldsymbol{\nu}}_{1,2}^{k+1} \right)$ **Scheme:**

The experiment was performed in MATLAB on a PC with an Intel Core i5 CPU (3.20GHz) and 8GB of RAM.

Images: Lena (256×256), Peppers (512×512), and Monarch (768 × 512)

Problem	Image	Blur Kernels	σ	PSNR	SSIM
1	Lena	Set 1	3	20.05	0.5239
2	Peppers	Set 2	8	17.55	0.5140
3	Monarch	Set 3	10	17.95	0.4608

The three blurs are generated: (1). Generate 9 kernels: {A(13), A(15), A(17), G(11, 9), G(21, 11), G(31, 13), M(21, 45), M(41, 90), M(61, 135)}; (2). Assign the above 9 kernels to {*K*11, *K*12, *K*13; *K*21, *K*22, *K*23; *K*31, *K*32, *K*33}; (3). then with the above kernels, we generate the final three sets of blurs for comparison by multiplying relative weights {1, 0, 0; 0, 1,0; 0, 0, 1} (Set 1), {0.6, 0.2, 0.2; 0.15, 0.7, 0.15; 0.1, 0.1, 0.8} (Set 2), and {0.7, 0.15, 0.15; 0.1, 0.8, 0.1; 0.2, 0.2, 0.6} (Set 3) to the corresponding blur kernels.

Comparison in PSNR, SSIM, and CPU time

Problem	Method	PSNR	SSIM	CPU
1	PLADMM-TGV	26.21	0.7680	32.24
	APEADMM-TGV	26.21	0.7649	35.62
	FTVD-v4	26.04	0.7583	10.37
2	PLADMM-TGV	25.57	0.7632	155.46
	APEADMM-TGV	25.56	0.7623	199.93
	FTVD-v4	25.25	0.7507	54.69
3	PLADMM-TGV	23.85	0.8083	234.45
	APEADMM-TGV	23.83	0.8063	302.68
	FTVD-v4	23.61	0.7965	84.43

APEADMM: He2014(IEEE-TIP)

PSNR=17.55, SSIM=0.5140

Degraded

PSNR=25.56, SSIM=0.7623

APEADMM-TGV

PSNR=25.57, SSIM=0.7632

PLADMM-TGV **PSNR=25.25, SSIM=0.7507**

FTVD-v4

PSNR=17.95, SSIM=0.4608

Degraded

PSNR=23.83, SSIM=0.8063

PSNR=23.61, SSIM=0.7965

Some Related Works

- 1. He Chuan, Hu Changhua, Zhang Wei, et al. A fast adaptive parameter estimation for total variation image restoration [J]. *IEEE Transactions on Image Processing*, 2014, 23(12): 4954–4967. (SCI, IF: 4.828, EI)
- 2. He Chuan, Hu Changhua, Li Xuelong, et al. A parallel alternating direction method with application to compound l_1 -regularized imaging inverse problems. *Information Sciences*, 2016, 348: 179-197. (SCI, IF: 4.832, EI)
- **3. He Chuan**, Hu Changhua, Li Xuelong, et al. A parallel primal-dual splitting method for image restoration [J]. *Information Sciences*, 2016, 358-359: 73-91. (SCI, IF: 4.832, EI)
- **4. He Chuan**, Hu Changhua, Li Xuelong. A parallel linearized ADMM with application to multichannel TGV-based image restoration [C]. *IEEE International Conference on Image Processing*, Beijing, China, September, 2017.(EI)
- **5. He Chuan**, Hu Changhua, Zhang Wei. Adaptive shearlet-regularized image deblurring via alternating direction method [C]. *IEEE International Conference on Multimedia & Expo* (IEEE ICME 2014), Chengdu, China, July, 2014. (EI)

The related MATLAB codes can be found on my Researchgate.

Conclusion

Full SplittingMore Parallel

Excluding Matrix Inverse Operation More concise and more fast

Extension

Other regularizations and other image inverse problems

THANK YOU!

Dr. Chuan He hechuan8512@163.com