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Introduction

To assess the progression of disease Duchenne Mus-
cular Dystrophy (DMD), the proportion of fibrosis
has been considered an important biomarker to pro-
vide prognostic information [2]. In the histo-images,
muscle and fibrosis are stained in red and blue. it
is critical to have accurate segmentation for mus-
cle and fibrosis in histo-images. While the classical
K-Means and Otsu are unable to provide satisfac-
tory results, the popular supervised deep learning
method is also difficult to be applied due to the
scarcity of manually annotated training sets. In our
work, we implement the original u-net [3] by taking
great K-Means segmentations as training set. More
importantly we innovatively modify the u-net [3] to
a noise-tolerant u-net (NTUN) so that the training
with noisy segmentations such as those from Otsu is
possible. Both methods show improved performance
than the K-Means and Otsu.

Objectives
•Apply deep learning in histo-image
segmentation with noisy training sets.

•Relieve doctor from manual segmentation.

Innovation

Motivated by the work in [4], we innovate a noise-
tolerant layer (Figure 1) to the output layer of a
deep learning image segmentation framework u-net
(Figure 2), which alleviates the requirement of accu-
rately segmented training images and enables “unsu-
pervised” histo-image segmentation by taking noisy
segmentation results of traditional image segmenta-
tion algorithms as the training outputs.
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Figure 1: Illustration of the “noise-tolerant” layer
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Figure 2: Schematic illustrations of u-net (without the extra linear layer in the red box) and our noise-tolerant u-net (with the extra
layer). The sizes of input images or feature maps with the corresponding numbers of features are denoted under each box.

Given w training images X = {X1, . . . , Xw} and the corresponding noisy segmentation Yn, we aim to recover
clean segmentations Ys. With the probabilistic model Pr(Yn) =

[ ∑
Ys

Pr(Yn|Ys)Pr(Ys|X)
]
, we can construct

the loss function:
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, (1)

where K is the total number of pixels in X and i and j are class of a pixel for i, j = 1, 2, 3. Minimization of
L is carried out using backpropagation combined with weight decay for noise-tolerant layer.

Segmentation Results

(a) Original (b) K-Means (c) Otsu (d) u-net1 (e) u-net2 (f) u-net3 (g) NTUN
Figure 3: Segmentation results. u-net1: u-net trained with ten “clean” segmented images. u-net2: u-net trained with one “clean”
segmented image. u-net3: u-net trained with one “noisy” segmented image. NTUN: Noise-tolerant u-net trained with one “noisy”
segmented image. The training was performed using a different image.

Both u-net and NTUN perform better than K-Means and Otsu’s method. Moreover, NTUN outperforms
the u-net without the noise-tolerant layer, especially at the places marked in green boxes. The segmentation
results by NTUN, when trained with “noisy” segmentation, are in fact consistent with the results by the u-net
trained with “clean” segmentation.

Statistical Results

We quantitatively evaluate segmentation results
based on the uniformity within clustered regions and
disparity across regions in Lab color space follow-
ing [1, 5] since we do not have the ground-truth.

1 2 3 4 5
KM 0.1240 0.1426 0.2141 0.1876 0.1317
OS 0.1081 0.1735 0.2450 0.1932 0.1660
UN 0.0983 0.1425 0.1908 0.1724 0.1241
UN* 0.1059 0.1611 0.1993 0.1857 0.1649
NTUN 0.0976 0.1429 0.1870 0.1731 0.1315
Table 1: Performance comparison by E for five groups. KM:
K-Means; OS: Otsu; UN: u-net trained with K-Means
segmentation; UN*: u-net trained with Otsu segmentations;
and NTUN: NTUN trained with Otsu segmentation.

Clearly, NTUN with noisy training samples and u-
net with clean training samples outperform all the
other methods. Even without manual segmentations
for training, our proposed NTUN can achieve ac-
ceptable histo-image segmentation for further anal-
ysis.

Conclusion

We have developed a noise-tolerant version of the
u-net, which enables “unsupervised” deep learning
for reliable segmentation of histo-images. Our pre-
liminary experimental results show clear advantages
of NTUN over the u-net and other traditional histo-
image segmentation algorithms.
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