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Object Detection

Input image Output image

Deformable Part B el Ak
Model (DPM) [1] pRoRN

@ DPMs describe the different views of an object via its components of
parts.

e Drawback: For detection process, the templates of these parts are
matched against all positions and scales = huge search space

- very slow

[1] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan, “Object detection
with discriminatively trained part-based models,” PAMI, vol. 32, no. 9, pp. 1627-1645, 2010.
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Related Work of DPM speed-up

@ Reduce the cost of feature extraction
a Feature pyramid (Piotr Dollar et al., 2014)
a Low-cost channel features (Piotr Dollar et al., 2009)
2 HOG with look-up tables (Junjie Yan et al., 2014)
- not resolve the primary bottleneck of massive cross-correlations

@ Reduce cross-correlation cost
2 FFT (Charles Dubout and Francois Fleuret, 2012)
a Branch and Bound (lasonas Kokkinos, 2011)
0 Root filters on low resolution image (Marco Pedersoli et al., 2015)

0 Cascade DPMs (Pedro F. Felzenszwalb et al., 2010; Junjie Yan et al.,
2014; Tianfu Wu and Song-Chun Zhu, 2015)
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Cascade framework

e Cascade frameworks have been popularized in Computer Vision
community by the seminal work of Paul Viola and Michael J. Jones,

2004 and

@ Other cascade frameworks (Dong Chen et al., 2016; Shuzhe Wu et al.,
2017; Hakan Cevikalp and Bill Triggs, 2017)
o Given a hypothesis/sub-window set of potential object position
o Remove non-object hypothesis as much as possible after each cascade stage

=2 All of them usually evaluate hypotheses individually

@ Recent work investigate the dependency between hypotheses in 2D
neighbourhood (NAC [2] and Crosstalk cascade [3]).

[2] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z. Li, “The fastest Deformable Part Model for object detection,” in
CVPR, 2014, pp. 249/-2504.

[3] Piotr Dollar, Ron Appel, and Wolf Kienzle, “Crosstalk cascades for frame-rate pedestrian detection,” in ECCYV,
2012, pp. 645-659.




Cascade DPM
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o We extend the idea of neighbourhood cascade to the 37 dimension of
scale to prune the hypotheses more aggressively.

@ This work introduces two technigues of 3D neighbourhood pruning
and scale pruning.

0 3D neighbourhood pruning

3D prunin
2D pruning P 9

Flexible 3D Neighbourhood Cascade

Hung VU Deformable Part Models for Object Detection



o We extend the idea of neighbourhood cascade to the 37 dimension of
scale to prune the hypotheses more aggressively.

@ This work introduces two technigues of 3D neighbourhood pruning
and scale pruning.

a Scale pruning 7 | =

discarded

The same location, 40 _7_3V ?g’f /

different scales

=>» Investigating the practicability of scale pruning
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Can we prune the hypotheses over scale?

@ We collected 1000 positive hypotheses randomly from 20 object
classes in the PASCAL VOC 2007 training dataset.
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The scales with the highest scores over stages are almost the same (or very close)
Idea: At an early state 7, keep K top scales and prune the others = reduce a lot of negative
hypotheses = speed up the system.




Early prediction of optimal scale
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@ Forexample: Tt =2 and K = 2 2 91% true scale in the hypothesis list
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Proposed framework: Flexible 3D Neighbourhood Cascade DPM

Step 1: 3D pruning

Step 2: Level pruning Step 3:1D pruning
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Existing DPM threshold pruning techniques

t
9¢) = @I ¢, D) + ) o] D) = df 6L 1o)
=1

e Hypothesis threshold pruning [1] a{:

prune y if g (y) < a;
o Deformation threshold pruning [1] a?:

prune y if g.(y) —di (¢, 1p) < af
e Semi-positive threshold [4] a;:

oruney if Iy’ € N(¥), g:(¥") — g:(y) > a

[1] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan, “Object detection
with discriminatively trained part-based models,” PAMI, vol. 32, no. 9, pp. 1627-1645, 2010.
[4] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z. Li, “The fastest Deformable Part Model for object

detection,” in CVPR, 2014, pp. 2497-2504.
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Step 1: 3D Neighbourhood Pruning

@ 3D neighbour pruning operates in the first T stages:

prune N3p (V)|if g:(y) < ai

@ N3p(y) is a square pyramid

o Thresholds a? and a; are also applied.
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Step 2: Scale Pruning

Whenever the stage T ends:
@ Project survival hypotheses into feature map of scale O
o Keep K hypotheses at the same locations

@ Run NMSy (non-maximum suppression) to remove ones not in the
top-K of the best hypotheses in its neighbourhood.
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Step 1: 3D pruning Step 2: Level pruning Step 3:1D pruning
° ®survival Odiscard Linkedlistof ~ Odiscard
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e From the stage t > 7, we use the hypothesis thresholds a} and
deformation thresholds a?

@ Pass the global threshold T
@ Run NMS to filter out the redundant detection results

satisfy al and a?
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o We tested our proposal on two problems of face detection and object

detection.

@ Hardware: Intel Core i7 2.6 GHz desktop with 20 GB memory.

0 Object detection
Object Detection DPM Cascade NAC Flex3DNB
mAP (%) 3285 3269 3139 29.30
Detection Time (second) 1.14 0.60 0.30 0.19

Mean AP and detection time in PASCAL VOC 2017

a Face detection

Face Detection

TSPM EDEL DPM Cascade NAC Flex3DNB

mAP (%)

81.38 80.84 80.02 80.03 80.11  80.58

Detection Time (second)

4226 2329 1498 4.53 3.20 2.02

Mean AP and detection time AFW
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Conclusion

@ This work investigated the capacity of integrating the 3D
neighbourhood information into Cascade DBM framework.

o It allows to obtain more efficient performance (compared to Cascade
DBM and 2D-neighbour Cascade DBM) but maintain the same level of
accuracy.

@ Main contributions of the paper include:
o 3D neighbourhood cascade
o Scale pruning technique

o Flexible neighbourhood: The volume of the neighbourhood changes w.r.t.
scores

@ Root score pruning (the first work to prune hypotheses at root stage)
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Question 1
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