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Motivation

• Motion blur - a common source of image 
corruption.

• Occurs while acquiring images and 
videos : 

✔ cameras fitted to the high speed motion drones 
✔ even when drone is hovering.

• Distorted images intervene with the 
mapping of the visual points.

● Need for real time Deblurring techniques: 
✔ Optical flow
✔ scene understanding 
✔ SLAM 
✔ visual odometry etc.
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Contribution

● Existing deblurring algorithms fail due to :
✔ non-generalized kernel based approaches
✔ computational complexity.

• Usual deblurring techniques solve an iterative inverse problem :
✔ good quality images
✔ precludes itself from real-time applications.

• Propose deblurring as a transfer learning problem.

• We solve it via learning framework : Coupled Autoencoder

• Proposed technique is :
✔ Generic.
✔ Used for any inverse problem in imaging, e.g. denoising, inpainting, super-resolution etc.
✔ operate on-the-fly.
✔ does not require solving any costly inverse problem.
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State of the Art

● Image deblurring techniques categorized in two types :
✔ blind 
✔ non-blind 

• Non-blind : require priors about the blur kernel and it’s parameters.

• Blind :  assume that the kernel is unknown.

• Estimation of accurate kernels is detrimental especially for space variant 
blurs.

• Few Single image deblurring techniques:
✔ jointly estimate the motion kernels and sharp image. 
✔ use sparsity priors to retreive latent sharp image for better kernel estimations.(Krishnan et al. 

CVPR 2011 , Pan et al. CVPR 2014, Xu et al. CVPR 2013)
✔ estimated in the camera motion space itself.(Whyte et al. IJCV 2014)
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State of the Art

• Recent development on devising learning based techniques - learning the 
degradation models.

• Plethora of studies on neural networks and CNNs frameworks for solving 
computer vision tasks (Xu et al. NIPS 2014 , Dong et al. PAMI 2016 )

• Xu et al. NIPS 2014, proposed an image deconvolution neural network for non-
blind deconvolution which focuses on removal of uniform blur.

• Ren et al. AAAI 2015, VCNN showed improvement on various high and low level 
vision tasks.

• Sun et al. CVPR 2015 paper predicted the motion kernel at patch level using a 
CNN and focused on Non-Uniform motion blur.
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Coupled Representation Learning

• Coupled dictionary learning has a rich literature.(Wang et al. CVPR 2012 , Yang et al. TIP 
2012)

● Used for solving a variety of problems in image synthesis:
✔ single image super-resolution
✔ photo-sketch synthesis
✔ cross spectral (RGB-NIR) face recognition
✔ RGB depth classification etc.

• Main idea : learning of dictionaries for the two domains - source and target, 
linear mapping the coefficients.

• The concept of coupled autoencoder is new; it follows from dictionary learning.

• Main idea : learn an autoencoder for the source and another for the target along 
with a mapping from the source to the target (semi-coupled) and vice versa (fully 
coupled).
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Coupled Autoencoder

• Handful of studies on Coupled Autoencoders.

• In Zeng et al., two deep stacked autoencoders for two domains - are learnt 
separately. Once learnt a mapping from the deepest layer of the source 
autoencoder is learnt to the target autoencoder - piecemeal and sub-optimal.

• In Wang et al., it learns coupled shallow autoencoders and stacks them up to 
form a deep architecture greedily. 

• The only prior work by  Wang et al. , optimally learns the mapping during training 
process is using a MDAs, which is much simpler to solve compared to the full 
autoencoder. 
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      Proposed Method

• Introduces an optimal formulation for Coupled autoencoder.

• Autoencoders for source and target are learnt simultaneously with the linear 
mapping between the two.

• Optimal in the sense that all the variables influence each other in the 
learning process - missing in prior works.

• Source autoencoder uses the blurred samples and the target autoencoder 
uses the corresponding clean samples.

• Coupling learns to map the representation from the source (blurred) to the 
target (clean).
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Proposed Method

      Schematic Diagram of Coupled Autoencoder
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     Formulation

Mathematically this is expressed as,

Source  AE Target  AE Coupling

• Solve via Variable Splitting and Split Bregman Technique.

• Reduce the formulation to multiple sub problems.

• Simple least squares problems having an analytic solution in the form of pseudo 
inverse.

• Update the Bregman relaxation variables.
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Dataset

● Standard image blur dataset - CERTH dataset.
✔ Training set :

 630 undistorted
 220 naturally-blurred
 150 artificially-blurred  

✔ Testing set :
 619 undistorted
 411 naturally-blurred
 450 artificially-blurred

• Small subset of the dataset - 50 images for training, 20 images for testing 

• Two scenarios Uniform blur and Non-Uniform Blur.

• Patchwise Deblurring of overlapping patches

• No pre-processing on the images. 
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Results

Blur Type Krishnan et al.[1] Whyte et al.[2] Pan et al.[3] Xu et al.[4] Xu et al.[5] Ren et al.[6] Proposed

         Uniform       
(PSNR)

                                        
                                       (SSIM)

23.7679 23.5257 23.6927 22.9265 25.6540 20.9342 30.8893

0.6929 0.6899 0.7015 0.6620 0.7708 0.7312 0.8787

    Non- Uniform   
(PSNR)

                                       (SSIM)

20.3013 20.4161 19.6594 20.5548 19.9718 20.8226 29.6364

0.5402 0.5361 0.5345 0.5812 0.5692 0.7328 0.8711
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Results

Blur Kernels used for experimentation. 

Uniform Blur Kernel Non Uniform Blur Kernel*

*A. Levin, Y.Weiss, F. Durand, andW. T Freeman, “Understanding and evaluating blind deconvolution algorithms,” in 

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1964–1971.
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Results (Uniform)

Clean Corrupt

Output of Ren et al. AAAI 2015 Proposed
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Results (Non Uniform)

Clean

Output of Ren et al. AAAI 2015 Proposed

Corrupt
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Conclusion

• Proposed optimal formulation of learning coupled autoencoders  
simultaneously learning mapping between source and target autoencoders.

• Our method is generalized and can be applied to any transfer learning 
problem.

• Through experimental evaluation we showed success of our proposed method 
on motion blurred images.

• Our method is computationally inexpensive and deblur images in seconds.
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Future Work

• Testing on real datasets i.e. videos captured from the moving drones.

• Extensive testing for other inverse problems such as super-resolution , 
denoising and reconstruction.

• Adding constraints and priors to the formulation. 
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