Fast De-streaking Method Using Plain Neural Network

Yuxiang Li¹, Bo Zhang², Raoul Florent²

¹ Ecole Polytechnique, France ² Medisys, Philips Research France

IEEE ICIP 2017 Sept. 20, 2017

Radon reconstruction

An image restoration task

- Radon transform
 - Line integrals -> sinogram
- Filtered back projection -> streaks
- Compressive sensing

Tomographic @ Wikimedia Commons

Noisy reconstruction

Reference

Neural network

From machine learning to image restoration

Clean image C

PHILIPS

All possible approaches

In-painting and denoising (de-streaking)

Neural network

What is that?

- Plain neural network (also called Multi Layer Perceptrons)
- Convolutional neural network
- Recurrent network

Network training

Dataset generation and reconstruction method

- ImageNet
 - Precomputed clean and noisy training pairs

Network training

Dataset generation and reconstruction method

• Take a 17*17 patch at a random position

Network training

Dataset generation and reconstruction method

- 4-layer neural network (Burger et al. 2012)
- 2047 neurons in the hidden layers, 249 neurons in the output layer

8

Result 20% angles, phantom

Results 20% angles, barbara

Results 50% angles, barbara

Results

Feature maps

• Input features

• Output features

Discussions

De-streaking approach

- Advantages
 - Faster than iterative method
 - Works better when the number of missing angles is large
 - Only requires an input in the image domain
- Disadvantages
 - Information from sonogram are sometimes violated

Discussions

In-painting and denoising (de-streaking)

Conclusion

Future investigations

- What is the best neural network structure?
 - Convolutional layer on top of the whole image
- Is Mean Squared Error the best loss function?
- Would is possible to combine in-painting and de-streaking approach?

