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ABSTRACT
Real-world face recognition using a single sample per person
(SSPP) is a challenging task. The problem is exacerbated if
the conditions under which the gallery image and the probe
set are captured are completely different. To address these is-
sues from the perspective of domain adaptation, we introduce
an SSPP domain adaptation network (SSPP-DAN). In the pro-
posed approach, domain adaptation, feature extraction, and
classification are performed jointly using a deep architecture
with domain-adversarial training. However, the SSPP charac-
teristic of one training sample per class is insufficient to train
the deep architecture. To overcome this shortage, we generate
synthetic images with varying poses using a 3D face model.
Experimental evaluations using a realistic SSPP dataset show
that deep domain adaptation and image synthesis complement
each other and dramatically improve accuracy. Experiments
on a benchmark dataset using the proposed approach show
state-of-the-art performance.

Index Terms— SSPP face recognition, Domain adapta-
tion, Image synthesis, SSPP-DAN, Surveillance camera

1. INTRODUCTION

There are several examples of face recognition systems us-
ing a single sample per person (SSPP) in daily life, such as
applications based on an ID card or e-passport [1]. Despite
its importance in the real world, there are several unresolved
issues associated with implementing systems based on SSPP.
In this paper, we address two such difficulties and propose a
deep domain adaptation with image synthesis to resolve these.

The first issue encountered while using SSPP is the het-
erogeneity of the shooting environment between the gallery
and probe set [2]. In real-world scenarios, the photo used in
an ID card or e-passport is captured in a very stable environ-
ment and is often used as a gallery image. On the other hand,
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Fig. 1: Examples of (a) a stable gallery image (source do-
main) (b) synthetic images generated to overcome the lack of
gallery samples (source domain) (c) unstable probe images
that include blur, noise, and pose variation (target domain)

probe images are captured in a highly unstable environment
using equipment such as surveillance cameras. The resulting
image includes noise, blur, arbitrary pose, and illumination,
which makes recognition difficult.

To address this issue, we approach SSPP face recognition
from the perspective of domain adaptation (DA). Generally,
in DA, a mapping between the source domain and the tar-
get domain is constructed, such that the classifier learned for
the source domain can also be applied to the target domain.
Inspired by this, we assume stable shooting condition of a
gallery set as the source domain and unstable shooting con-
dition of a probe set as the target domain as shown in Fig. 1.
To apply DA in the unified deep architecture, we use a deep
neural network with domain-adversarial training, in a manner
proposed in [3]. The benefit of this approach is that labels
in the target domain are not required for training, i.e., the ap-
proach accommodates unsupervised learning.

The second challenge in using SSPP is in the shortage of
training samples [4]. In general, the lack of training samples
affects any learning system adversely, but it is more severe for
deep learning approaches. To overcome this, we generate syn-
thetic images with varying poses using a 3D face model [5] as
shown in Fig. 1 (center). Unlike SSPP methods based on ex-
ternal datasets [4, 6, 7], we generate virtual samples from an
SSPP gallery set. The proposed method also differs from con-
ventional data augmentation methods that use crop, flip, and
rotation [8, 9] in that it takes into account well-established
techniques such as facial landmark detection and alignment
that consider realistic facial geometric information. We pro-
pose a method SSPP-DAN that combines face image synthe-
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Fig. 2: Outline of the SSPP-DAN. Image synthesis is used to increase the number of samples in the source domain. The feature
extractor and two classifiers are used to bridge the gap between source domain (i.e., stable images) and target domain (i.e.,
unstable images) by adversarial training with gradient reversal layer (GRL).

sis and DA network to enable realistic SSPP face recognition.
To validate the effectiveness of SSPP-DAN, we con-

structed a new SSPP dataset called ETRI-KAIST Labeled
Faces in the Heterogeneous environment (EK-LFH). In this
dataset, the gallery set was captured using a webcam in a
stable environment, and the probe set was captured using
surveillance cameras in an unconstrained environment. Us-
ing the experimental results, we validated that DA and image
synthesis complement each other and eventually show a dras-
tic 19.31 percentage points improvement over the baseline
that does not use DA and image synthesis. Additionally,
we performed experiments on the SSPP protocol of Labeled
Faces in the Wild (LFW) benchmark [10] to demonstrate the
generalization ability of the proposed approach and confirmed
state-of-the-art performance.

The main contributions of this study are as follows: (i) We
propose SSPP-DAN, a method that combines face synthesis
and deep architecture with domain-adversarial training. (ii)
To address the lack of realistic SSPP datasets, we construct a
dataset whose gallery and probe sets are obtained from very
different environments. (iii) We present a comparative analy-
sis of the influence of DA with the face benchmark as well as
with the EK-LFH dataset.

2. RELATED WORKS

A number of methods based on techniques such as image par-
titioning and generic learning have been proposed to address
the shortage of training samples in SSPP face recognition.
Image partitioning based methods augment samples by par-
titioning a face image into local patches [1, 11]. Although
these techniques efficiently obtain many samples from a sin-
gle subject, the geometric information of the local patch is
usually ignored. There have been attempts to use external
generic sets [4, 6, 7] by assuming that the generic set and
the SSPP gallery set share some intra-class and inter-class in-
formation [12]. In this study, we augmented virtual samples
from an SSPP gallery set instead of using an external set.

Several studies have proposed the application of DA for
face recognition. Xie et al. [2] used DA and several descrip-
tors like LBP, LPQ, and HOG to handle the scenario in which
the gallery set consists of clear images and the probe set has
blurred images. Banerjee et al. [13] proposed a technique for
surveillance face recognition using DA and a bank of eight
descriptors such as Eigenfaces, Fisherfaces, Gaborfaces, FV-
SIFT, and so on. Unlike the above approaches, which apply
DA after extracting the handcrafted-feature from the image,
we jointly perform feature learning, DA, and classification in
an integrated deep architecture. Moreover, we solve the SSPP
problem and consider pose variations, unlike the abovemen-
tioned approaches that only use frontal images.

A face database using surveillance camera called SCface
was proposed in [14]. In SCface, only one person appears in
each image and they are photographed at a fixed location. In
contrast, the images in ours were captured in an unconstrained
scenario in which 30 people were walking in the room, which
induced more noise, blur, and partial occlusions.

3. PROPOSED METHOD

SSPP-DAN consists of two main components: virtual image
synthesis and deep domain adaptation network (DAN) that
consists of feature extractor and two classifiers. The overall
flow of SSPP-DAN is illustrated in Fig. 2.

3.1. Virtual Image Synthesis

The basic assumption in DA is that samples are abundant in
each domain and the sample distribution of each domain is
similar but different (i.e., shifted from the source domain to
the target domain [15]). However, in our problem under con-
sideration, there are few samples in the source domain (i.e.,
SSPP). In such an extreme situation, it is difficult to apply
DA directly and eventually, the mechanism will fail. To ad-
dress this problem, we synthesize images with changes in
pose, which improves the feature distribution obtained from
the face images.
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(a) DA fails to work because of the lack of samples in the source domainPose
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(b) Virtual samples along the pose axis enable successful DA, resulting in a
discriminative embedding space

Fig. 3: Facial feature space (left) and its embedding space
after applying DA (right). The subscript “s” and “t” in the
legend refer to the source and target domains, respectively.

For image synthesis, we first estimate nine facial land-
mark points from the source domain. We use the supervised
descent method (SDM) [16] because it is robust to illumina-
tion changes and does not require a shape model in advance.
We then estimate a transformation matrix between the de-
tected 2D facial points and the landmark points in the 3D
model [5, 17] using least-squares fit. Finally, we generate
synthetic images in various poses, and these are added to the
source domain as shown in Fig. 3.

3.2. Domain Adaptation Network

While the variations in pose between the distributions of the
two domains can be made similar by image synthesis S, other
variations such as blur, noise, partial occlusion, and facial
expression remain. To resolve the remaining differences be-
tween the two domains using DA, we use a deep network that
consists of feature extractor F , label classifier C, and domain
discriminator D. Given an input sample, it is first mapped as
a feature vector through F . There are two branches from the
feature vector—the label (identity) is predicted by C and the
domain (source or target) is predicted by D as shown in Fig. 2.

Our aim is to learn deep features that are discriminative
on the labeled source domain during training. For this, we
update the parameters of F and C, θF and θC , to minimize
the label prediction loss. At the same time, we aim to transfer
knowledge from the network trained on the labeled source do-
main to the unlabeled target domain (recall that we consider
unsupervised DA). To obtain the domain-invariant features,
we attempt to find a θF that maximizes the domain predic-
tion loss, while simultaneously searching for parameters of
D (θD) that minimize the domain prediction loss. Taking into

consideration all these aspects, we set the loss functions as

LC =
∑
i∈S

Li
C when update θC

LD =
∑

i∈S∪T

Li
D when update θD

LF =
∑
i∈S

Li
C − λ

∑
i∈S∪T

Li
D when update θF

(1)

where Li
C and Li

D represent the loss of label prediction and
domain prediction evaluated in the i-th sample, respectively.
Here, S and T denote a finite set of indices of samples cor-
responding to the source and target domains. The parameter
λ is the most important aspect of this equation. A negative
sign of λ leads to an adversarial relationship between F and
D in terms of loss, and its size adjusts the trade-off between
them. As a result, during minimization of the network loss L,
the parameters of F converge at a compromise point that is
discriminative and satisfies domain invariance.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

In all experiments, the face region was detected using the
AdaBoost detector trained using Faces in the Wild [18]. For
feature learning, we fine-tuned a pre-trained CNN model,
VGG-Face [8], used it as the feature extractor F , and at-
tached a shallow network as the label classifier C and domain
discriminator D. The code for the SSPP-DAN and EK-
LFH dataset are publicly available at our online repository
(https://github.com/csehong/SSPP-DAN).

4.2. Evaluation on EK-LFH

Owing to the lack of a dataset suitable for real-world SSPP,
we constructed a EK-LFH dataset containing 15,930 images
of 30 subjects. Table 1 shows the details of the dataset. The
webcam set was used as the source domain for the training.
In the surveillance set, 10,760 samples were used for training
without labels in the target domain, and the rest were used for
testing. Example images are shown in Fig. 4.

To demonstrate the effectiveness of the proposed method,
we performed evaluations using several models as shown in
Table 2 using the procedure followed in [3]. The source-
only model was trained using samples in the source domain,

Table 1: Dataset specification

Domain Source Target
Set webcam surveillance
Subjects 30 30
Samples 30 15, 900
Pose frontal various

Condition stable unstable
(blur, noise, illumination)



(a) Shooting condition for the source (left) and target (center and right)

(b) Face regions from the source (leftmost) and target (the others)

Fig. 4: Sample images in EK-LFH

Table 2: Recognition rates (%) for different models and dif-
ferent training sets of the EK-LFH

Model Training set Accuracy

Source only S 39.22
S + Sv 37.15

DAN S + T 31.11
SSPP-DAN S + Sv + T 58.53
Semi DAN S + T + Tl 67.28
Semi SSPP-DAN S + Sv + T + Tl 72.08
Train on target Tl 88.31
S: Labeled webcam T: Unlabeled surveillance
Sv: Virtual set from S Tl: Labeled surveillance

which revealed the theoretical lower bound on performance
as 39.22%. The train-on-target model was trained on the tar-
get domain with known class labels. This revealed the upper
performance bound as 88.31%. The unlabeled target domain
as well as the labeled source domain were used in DAN and
SSPP-DAN for unsupervised DA. Additionally, we evaluated
the semi-supervised models using the same setting as DAN
and SSPP-DAN, but by revealing only three labels per person
in the target domain.

From Table 2, we clearly observe that SSPP-DAN with
unsupervised as well as semi-supervised learning signifi-
cantly improves accuracy. In particular, even when the labels
of the target domain are not given, the accuracy of the pro-
posed SSPP-DAN was 19.31 percentage points higher than
that for source-only. The fourth and fifth rows validate the
importance of image synthesis when applying unsupervised
DA. Adding synthesized virtual images to the training set
increased the performance by 27.42 percentage points. Inter-
estingly, as shown in the third row, adding synthetic images
to source-only degrades performance. This result indicates
that image synthesis alone cannot solve the SSPP problem
efficiently, instead DA and image synthesis operate comple-
mentarily in addressing the SSPP problem.

4.3. Evaluation on LFW for SSPP

In order to demonstrate the generalization ability of SSPP-
DAN, we performed an additional experiment on the LFW

Table 3: Recognition rates (%) on LFW dataset for SSPP

Method Accuracy Method Accuracy
DMMA [1] 17.8 RPR [20] 33.1
AGL [6] 19.2 DeepID [21] 70.7
SRC [4] 20.4 JCR-ACF [19] 86.0
ESRC [7] 27.3 VGG-Face [8] 96.43
LGR [22] 30.4 Ours 97.91

using the proposed SSPP method. For fair comparison with
previous SSPP methods, we used LFW-a [10], and followed
the experimental setup described in [19]. The LFW for SSPP
included images from 158 subjects, each of which contained
more than 10 samples, as well as the labels of all subjects.
The first 50 subjects were used as probe and gallery, and the
images of the remaining 108 subjects were used as a generic
set. For the 50 subjects, the first image was used as the gallery
set and the remaining images were used as the probe set.

Since the LFW did not consider DA originally, it made
no distinction between source and target domain. Hence, we
used the original generic set as the source domain and the
synthetic images from the generic set as the target domain.
We applied DA in a supervised manner to generate a discrim-
inative embedding space. After training, we used the out-
put of the last FC layer as the feature, and implemented pre-
diction using the linear SVM. We also evaluated fine-tuned
VGG-Face without image synthesis and DA. Experiments us-
ing the benchmark confirmed that VGG-face based methods
including ours have superior discriminative power over other
approaches as shown in Table 3. This indicates the gener-
ality of deep features from the VGG-Face trained on a large
scale dataset. It is apparent from this table that, by compar-
ing VGG-Face with the proposed method, the combination of
image synthesis and DA shows promising results in the ‘wild’
dataset.

5. CONCLUSION

This paper proposed a method based on integrated domain
adaptation and image synthesis for SSPP face recognition,
especially for cases in which the shooting conditions for the
gallery image and the probe set are completely different. Syn-
thetic images generated in various poses were used to deal
with the lack of samples in the SSPP. In addition, a deep ar-
chitecture with domain-adversarial training was used to per-
form domain adaptation, feature extraction, and classification
jointly. Experimental evaluations showed that the proposed
SSPP-DAN had an accuracy 19.31 percentage points higher
than that of the source-only baseline even when the labels of
the target domain were not given. Our method also achieved
state-of-the-art results on the challenging LFW for SSPP. In
future work, we plan to expand our approach to a fully train-
able architecture including image synthesis as well as domain
adaptation using standard back-propagation.



6. REFERENCES

[1] Jiwen Lu, Yap-Peng Tan, and Gang Wang, “Discrimi-
native multimanifold analysis for face recognition from
a single training sample per person,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35,
no. 1, pp. 39–51, 2013.

[2] Xiaokang Xie, Zhiguo Cao, Yang Xiao, Mengyu Zhu,
and Hao Lu, “Blurred image recognition using domain
adaptation,” in Image Processing (ICIP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 532–536.

[3] Yaroslav Ganin and Victor Lempitsky, “Unsupervised
domain adaptation by backpropagation,” in Proceed-
ings of the 32nd International Conference on Machine
Learning (ICML-15), 2015, pp. 1180–1189.

[4] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar
Sastry, and Yi Ma, “Robust face recognition via sparse
representation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, no. 2, pp. 210–227,
2009.

[5] Li Zhang, Noah Snavely, Brian Curless, and Steven M
Seitz, “Spacetime faces: High-resolution capture for
modeling and animation,” in Data-Driven 3D Facial
Animation, pp. 248–276. Springer, 2008.

[6] Yu Su, Shiguang Shan, Xilin Chen, and Wen Gao,
“Adaptive generic learning for face recognition from a
single sample per person.,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2010, pp. 2699–2706.

[7] Weihong Deng, Jiani Hu, and Jun Guo, “Extended
src: Undersampled face recognition via intraclass vari-
ant dictionary,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 9, pp. 1864–1870,
2012.

[8] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisser-
man, “Deep face recognition.,” in BMVC, 2015, p. 6.

[9] Kaihao Zhang, Yongzhen Huang, Ran He, Hong Wu,
and Liang Wang, “Localize heavily occluded human
faces via deep segmentation,” in Image Processing
(ICIP), 2016 IEEE International Conference on. IEEE,
2016, pp. 2311–2315.

[10] Lior Wolf, Tal Hassner, and Yaniv Taigman, “Effective
unconstrained face recognition by combining multiple
descriptors and learned background statistics,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 10, pp. 1978–1990, 2011.

[11] Haibin Yan, Jiwen Lu, Xiuzhuang Zhou, and Yuanyuan
Shang, “Multi-feature multi-manifold learning for

single-sample face recognition,” Neurocomputing, vol.
143, pp. 134–143, 2014.

[12] Tingwei Pei, Li Zhang, Bangjun Wang, Fanzhang Li,
and Zhao Zhang, “Decision pyramid classifier for face
recognition under complex variations using single sam-
ple per person,” Pattern Recognition, vol. 64, pp. 305–
313, 2017.

[13] Samik Banerjee and Sukhendu Das, “Domain adapta-
tion with soft-margin multiple feature-kernel learning
beats deep learning for surveillance face recognition,”
arXiv preprint arXiv:1610.01374, 2016.

[14] Mislav Grgic, Kresimir Delac, and Sonja Grgic,
“Scface–surveillance cameras face database,” Multime-
dia tools and applications, vol. 51, no. 3, pp. 863–879,
2011.

[15] Hidetoshi Shimodaira, “Improving predictive inference
under covariate shift by weighting the log-likelihood
function,” Journal of statistical planning and inference,
vol. 90, no. 2, pp. 227–244, 2000.

[16] Xuehan Xiong and Fernando De la Torre, “Supervised
descent method and its applications to face alignment,”
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2013, pp. 532–539.

[17] Jun-Yan Zhu, Aseem Agarwala, Alexei A Efros, Eli
Shechtman, and Jue Wang, “Mirror mirror: Crowd-
sourcing better portraits,” ACM Transactions on Graph-
ics (TOG), vol. 33, no. 6, pp. 234, 2014.

[18] Tamara L Berg, Alexander C Berg, Jaety Edwards, and
David A Forsyth, “Whos in the picture,” Advances in
neural information processing systems, vol. 17, pp. 137–
144, 2004.

[19] Meng Yang, Xing Wang, Guohang Zeng, and Linlin
Shen, “Joint and collaborative representation with local
adaptive convolution feature for face recognition with
single sample per person,” Pattern Recognition, 2016.

[20] Shenghua Gao, Kui Jia, Liansheng Zhuang, and Yi Ma,
“Neither global nor local: Regularized patch-based rep-
resentation for single sample per person face recogni-
tion,” International Journal of Computer Vision, vol.
111, no. 3, pp. 365–383, 2015.

[21] Yi Sun, Xiaogang Wang, and Xiaoou Tang, “Deep learn-
ing face representation from predicting 10,000 classes,”
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2014, pp. 1891–1898.

[22] Pengfei Zhu, Meng Yang, Lei Zhang, and Il-Yong Lee,
“Local generic representation for face recognition with
single sample per person,” in Asian Conference on Com-
puter Vision. Springer, 2014, pp. 34–50.


	 Introduction
	 Related Works
	 Proposed Method
	 Virtual Image Synthesis
	 Domain Adaptation Network

	 Experimental Results
	 Experimental Setup
	 Evaluation on EK-LFH
	 Evaluation on LFW for SSPP

	 CONCLUSION
	 References

