A Low-Complexity Metric for the Estimation of Perceived Chrominance Sub-Sampling Errors in Screen Content Images

LogMeIn

1. Introduction

e Screen sharing is a popular feature in web conferencing and remote desktop applications
e Commonly used basic profiles of video codecs typically utilize the YCbCr color space involving 4:2:0 chrominance sub-sampling, introducing visually disturbing artifacts for screen content

e Proposal: Perceived Chrominance Sub-sampling Error (PCSE) metric for automatic detection of visually disturbing artifacts
e Subjectively evaluated screen content image data set created, which is employed for the performance evaluation

5. Conclusions and Outlook

Conclusions

e PCSE metrics for measuring the perceived artifact level of chrominance sub-sampling errors in screen content images
a Significantly outperforming conventional image quality metrics MSE, PSNR, and SSIM

Outlook

e Specific coding or pre-/post-processing techniques for artifact reduction in affected image regions
2. Perceived Chrominance Sub-Sampling Error (PCSE)

Figure: Color space conversion steps for transmitting $R G B$ data in the 4:2:0 subsampled $Y C b C r$ format $Y \widetilde{C b} \widetilde{C r}$. The transmission channel, including encoding and decoding, is omitted for simplicity.
e 4:2:0 chrominance sub-sampling artifacts are caused by missing high frequency components (sharpness) in the up-sampled image
e Pixel-wise sharpness for certain color channel:

$$
S[\boldsymbol{i}]=S[x, y]=\sqrt{G_{x}[x, y]^{2}+G_{y}[x, y]^{2}}
$$

e Sobel operators for gradients $G_{x}[x, y]$ and $G_{y}[x, y]$
e Computed for $Y, C b$, and $C r$ plane: $S_{Y}[\boldsymbol{i}], S_{C b}[\boldsymbol{i}]$, and $S_{C r}[\boldsymbol{i}]$
Pixel-based artifacts forecast using the 4:4:4 image

$$
\operatorname{PCSE}_{F}[\boldsymbol{i}]=1-\frac{S_{Y}[\boldsymbol{i}]^{2}}{S_{Y}[\boldsymbol{i}]^{2}+S_{C b}[\boldsymbol{i}]^{2}+S_{C r}[\boldsymbol{i}]^{2}}
$$

Pixel-based full-reference artifact detection
e Incorporate the reconstructed image $Y \widehat{C b} \widehat{C r}$
e Higher precision of perceived error estimate expected

$$
\operatorname{PCSE}_{D}[\boldsymbol{i}]=1-\frac{S_{Y}[\boldsymbol{i}]^{2}+S_{\widehat{C b}}[\boldsymbol{i}]^{2}+S_{\widehat{C r}}[\boldsymbol{i}]^{2}}{S_{Y}[\boldsymbol{i}]^{2}+S_{C b}[\boldsymbol{i}]^{2}+S_{C r}[\boldsymbol{i}]^{2}}
$$

From pixel-based to image PCSE
e Condense the PCSE image to a single value:

$$
\overline{\operatorname{PCSE}}_{F}=\frac{1}{\left\|\mathrm{PCSE}_{F}[\boldsymbol{i}]\right\|_{0}} \sum_{i} \operatorname{PCSE}_{F}[\boldsymbol{i}]
$$

e Exception: $\overline{\operatorname{PCSE}}_{F}=0$ for the case that $\left\|\operatorname{PCSE}_{F}[\boldsymbol{i}]\right\|_{0}=0$
e Analogously from $\operatorname{PCSE}_{D}[\boldsymbol{i}]$ to $\overline{\operatorname{PCSE}}_{D}$

3. Subjectively Evaluated Test Set

Test images creation

e Selected $\mathrm{Y} / \mathrm{Cb} / \mathrm{Cr}$ combinations leading to 18 different colors
e Images: specific text color on monochromatic background
e 224 test images labeled as good or excellent (see examples in 1. Introduction) Subjective test
e Absolute Category Rating (ACR)
e 10 subjects (partly experts)
e Focus on text quality, disregarding color difference
a Averaged rating per image:

Figure: Histogram of MOS values.
Mean Opinion Score (MOS)

4. Experimental Results

Figure: Scatter plots of the $\overline{P C S E}_{F}$ and the $\overline{P C S E}_{D}$ against the MOS values with the least squares regression lines in green.
Performance metrics:
e Pearson Linear Correlation Coefficient (PLCC)

- Spearman Rank-Order Correlation Coefficient (SROCC)
e Root Mean Squared Error (RMSE)

$$
\begin{array}{cccccc}
\hline & \text { MSE } & \text { PSNR } & \text { SSIM } & \overline{\mathrm{PCSE}}_{F} & \overline{\mathrm{PCSE}}_{D} \\
\hline \text { PLCC } & -0.3995 & 0.4642 & 0.4512 & -0.7937 & -0.7943 \\
\text { SROCC } & -0.5202 & 0.5116 & 0.4533 & -0.7852 & -0.7857 \\
\text { RMSE } & 0.8730 & 0.8422 & 0.8499 & 0.5793 & 0.5786 \\
\hline
\end{array}
$$

No significant performance changes by
e alternative filter kernels for the gradient computation
e different weightings of the luminance and the chrominance components

