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Problem
Image classification is one of the core problems in
computer vision. There exist many challenges in
the visual contents of images, including intra-class
variance, scale and viewpoint variation, background
clutter, etc., which bring negative effects to the per-
formance of the current methods.

Contribution
A novel framework that combine the techniques of
metric learning, multi-view learning and deep learn-
ing are proposed to make image classification. Mul-
tiple kinds of features are extracted to obtain infor-
mation from different sides and deep neural networks
make nonlinear transformations on these features to
gather similar images and scatter dissimilar images.

Preliminaries and Notations
Give a multi-view dataset with m training examples
from c classes, T = {Tv ∈ Rnv×m ×Y}Vv=1, where

Tv = {(xv1, y1), (xv2, y2), · · · , (xvm, ym)} (1)

is the feature set from v-th view and yi ∈ Y =
{1, 2, · · · , c} is the label corresponding to each fea-
ture input.
Metric learning: learning a data-dependent metric
to measure similarity more precisely
Multi-view learning: incoperate the information
from different views
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Proposed Framework
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V deep neural networks are constructed, each for a
view, to make nonlinear transformation. For each
training input xvi, its output of the first layer in
the v-th network is h1vi = s(Ŵ 1

v x̂vi), where Ŵ 1
v =

(W 1
v , b

1
v), x̂vi = (x>vi, 1)>. the output of the top hid-

den layer is hLvi = s(WL
v h

L−1
vi + bLv ) = s(ŴL

v ĥ
L−1
vi ).

Then the output

zvi = s(ŴL+1
v ĥLvi).

The output should meet two conditions:
(1) Cohensiveness and scatterness:

min
Ŵ

J1 =

V∑
v=1

m∑
i=1

αv(d1(zvi)− Cd2(zvi))

where

d1(zvi) =
1

K

∑
zvk∈Svi

‖zvi − zvk‖2

d2(zvi) =
1

K − 1

∑
zvk∈Dvi

‖zvi − zvk‖2

(2) Consistency:

min J2 =

m∑
i=1

V∑
k,l=1

d(zki, zli)

The framework of multi-view deep metric learning
is established by integerating the above two goals:

min J = J1 + J2

Solution
Alternative optimization is used to obtain the solu-
tion alternately. First, the weight α is initialized and
fixed, then the object function is an unconstrained
problem and gradient descent is adopted to solve
problem iteratively. The gradient of the objective
function with respect to Ŵ l

v is

∂J

∂Ŵ l
v

= αv

m∑
i=1

∂

∂Ŵ l
v

(d1 − Cd2) +

ε

2

m∑
i=1

∑
l 6=v

∂

∂Ŵ l
v

d(zki, zli) + λŴ l
v (2)

After obtaining the weight matrix Ŵ , then α can be
calculated based on the KKT condition,

α =
µe+ e>κe− V κ

µV
(3)

where κ = (κ1, · · · , κV ) ∈ RV and κv =
m∑
i=1

(d1(zvi)− Cd2(zvi)), v = 1, · · · , V .

Predict
Give a test image with V views, all of its views will
be input to corresponding networks learned from
the training images. Suppose that the outputs are
z1, z2, · · · , zV and their nearest neighbors from the c-
th class of the train set can be found, z′1, z

′
2, · · · , z′V .

The distance between the test image and the nearest

neighbor in c-th class is dc =
V∑

v=1
αv‖zv − z′v‖22. So

the label of the test image is y = arg min
c
dc.

Nearest neighbors

Query kNN+HOG kNN+LBP MVDML

Classification and complexity

Datasets View Euc MCML LMNN ITML MVDML

Caltech
(600&6)

Single
11.3±5.0 7.7±0.3 8.0±2.2 7.8±2.9 \
18.2±0.8 15.3±2.8 15.0±2.0 11.8±0.6 \

Multiple 11.3±5.0 7.0±1.5 7.5±1.7 6.3±1.8 6.3±0.3

Galaxy
(522&3)

Single
19.2±2.6 14.0±4.4 14.2±3.4 14.0±3.4 \
20.5±3.4 20.5±3.2 21.1±0.9 15.7±1.3 \

Multiple 19.2±2.3 13.2±3.0 14.2±2.9 14.0±4.4 11.7±0.3

GRAZ02
(800&4)

Single
58.2±3.0 55.3±2.0 53.6±2.7 57.9±2.6 \
51.3±2.5 50.1±4.1 38.3±2.1 52.5±5.8 \

Multiple 57.7±3.2 52.5±4.8 48.3±0.6 58.9±3.7 42.8±1.5

bike
(745&2)

Single
40.1±2.6 30.6±1.9 38.8±3.7 36.8±1.5 \
31.6±5.4 32.4±1.2 31.3±2.7 31.6±0.8 \

Multiple 40.1±2.4 30.2±2.4 31.7±1.7 35.8±2.0 32.8±2.9

car
(800&2)

Single
43.0±4.9 39.5±1.5 42.8±1.8 41.2±4.0 \
40.4±0.4 39.3±1.1 35.9±3.1 36.7±1.7 \

Multiple 42.6±4.9 37.7±1.5 36.5±1.9 40.7±4.1 38.0±2.1

person
(691&2)

Single
36.9±4.5 25.5±1.5 30.3±0.9 31.2±5.8 \
35.9±3.1 35.2±1.2 32.1±1.1 34.2±3.6 \

Multiple 36.8±4.5 27.2±1.8 28.8±2.0 30.7±5.1 28.4±2.0

Datasets MCML LMNN ITML MVDML
Caltech 605+685/2056 313+368/533 119+97/154 49s
Galaxy 427+375/1783 93+357/172 119+113/133 44s

GRAZ02 1032+929/4210 82+474/155 121+107/172 67s


