Adaptive Cascade Threshold Learning from Negative Samples for Deformable Part Models

Khoa Pho Hung Vu Bac Le

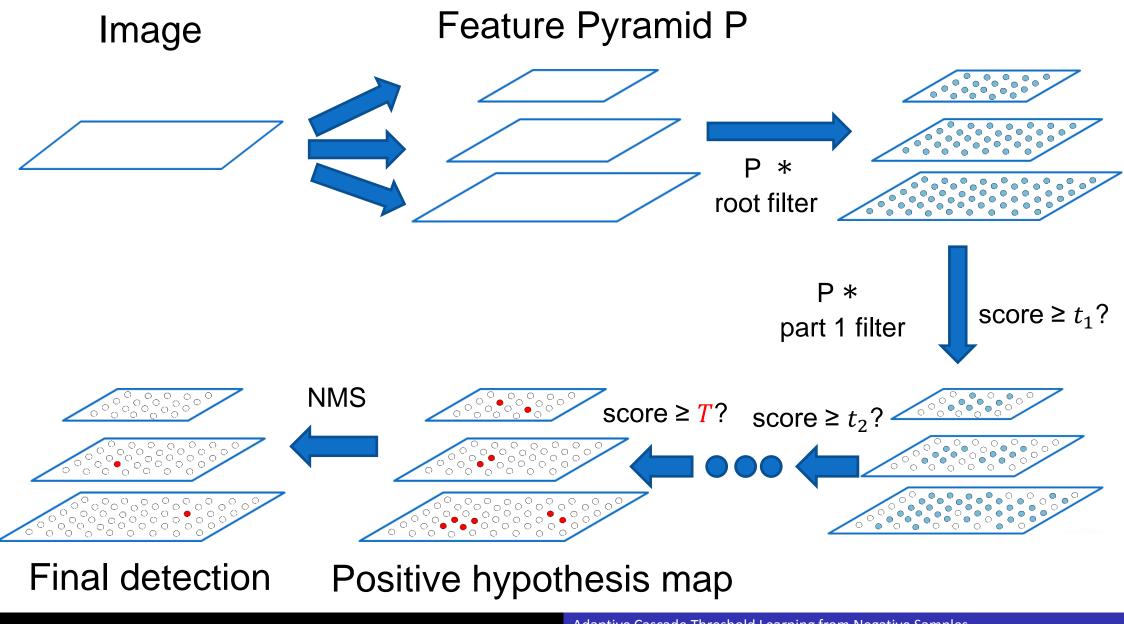
VNU HCMC, University of Science, Ho Chi Minh city, Vietnam

Adaptive Cascade Threshold Learning from Negative Samples for Deformable Part Models

Outline

- Introduction of Cascade DPM
- Existing Methods of Training Thresholds
- Proposed Method
- Experiments
- Conclusion

Cascade DPM



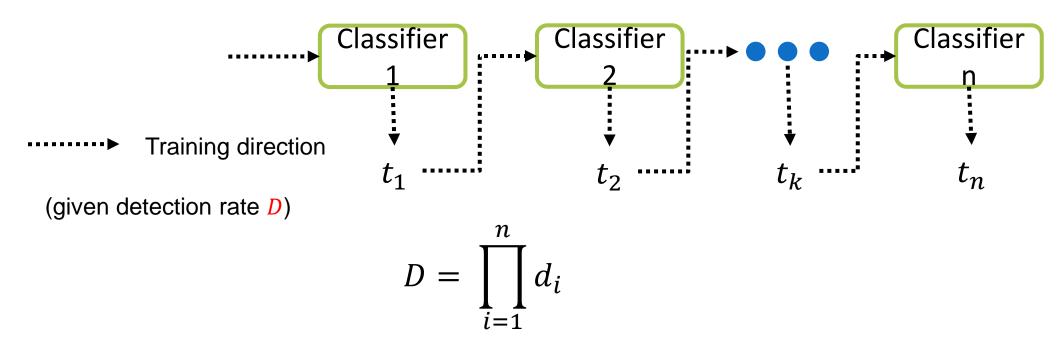
Thresholds in Cascade framework

Good threshold

- speed up (22x [1])
- reduce false positive hypothesis rate ([1])
- ullet Higher threshold ullet remove potential objects
- ullet Lower threshold ightarrow harm the speed
- \rightarrow appropriate threshold \rightarrow need training data

Existing Methods of Training Threshold

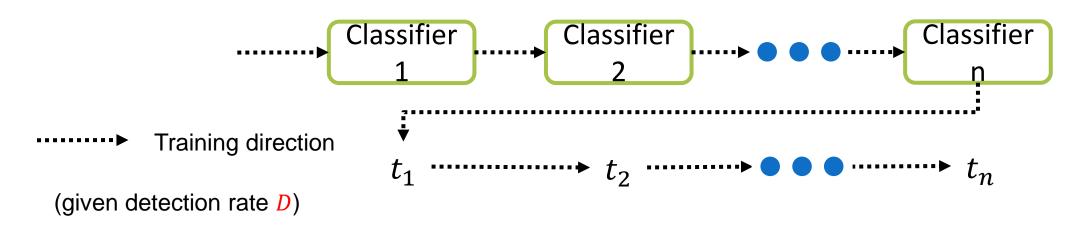
Approach 1: Learn classifers and thresholds together



- Brubaker at el. [2]: fix number of classifiers
- Viola and Jones [3]: keep training and adding classifiers until achieve D

Existing Methods of Training Threshold

Approach 2: Learn classifers and thresholds separately



- Bourdev [4], Yang[5]: maximum threshold
- Lou [6]: greedy search on ROC curve
- Felzenswab [1]: the minimum positive hypothesis score

Existing Methods of Training Threshold

Drawbacks:

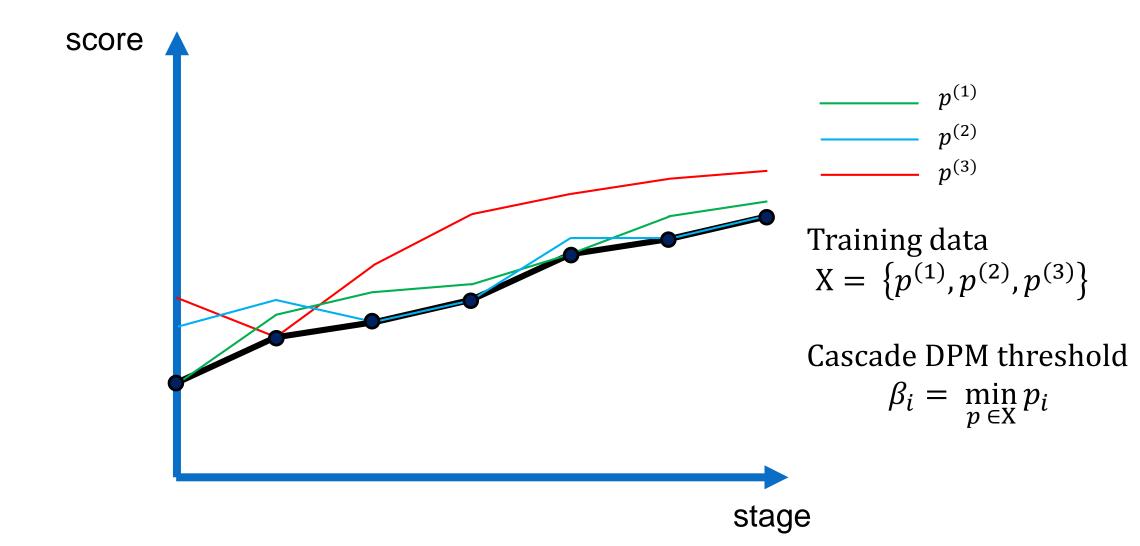
- a threshold learning step is required besides model training
- intensively human efforts for annotating object regions to learn high-quality thresholds

 Our idea is that, instead of collecting numerous training images with just several object samples per image, we learn thresholds from countless negative samples in one image.

• Advantages:

- online threshold learning method with no labeled training data.
- given an input image, our method is able to automatically estimate thresholds and detect objects of interest on the fly.

Cascade DPM threshold training



Proposed Method

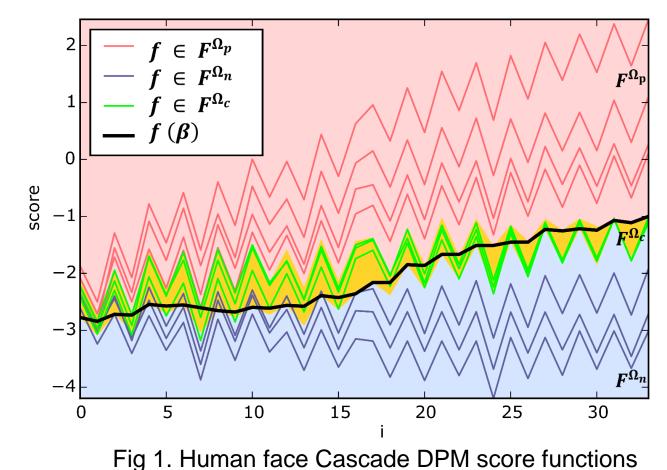
Objective-like Negative hypothesis set:

$$\Omega_{c} = \left\{ \gamma \in \Omega \middle| \forall i < n, \nu_{2i}^{\gamma} \ge \beta_{2i}; \nu_{2n}^{\gamma} < \beta_{2n} \right\}$$

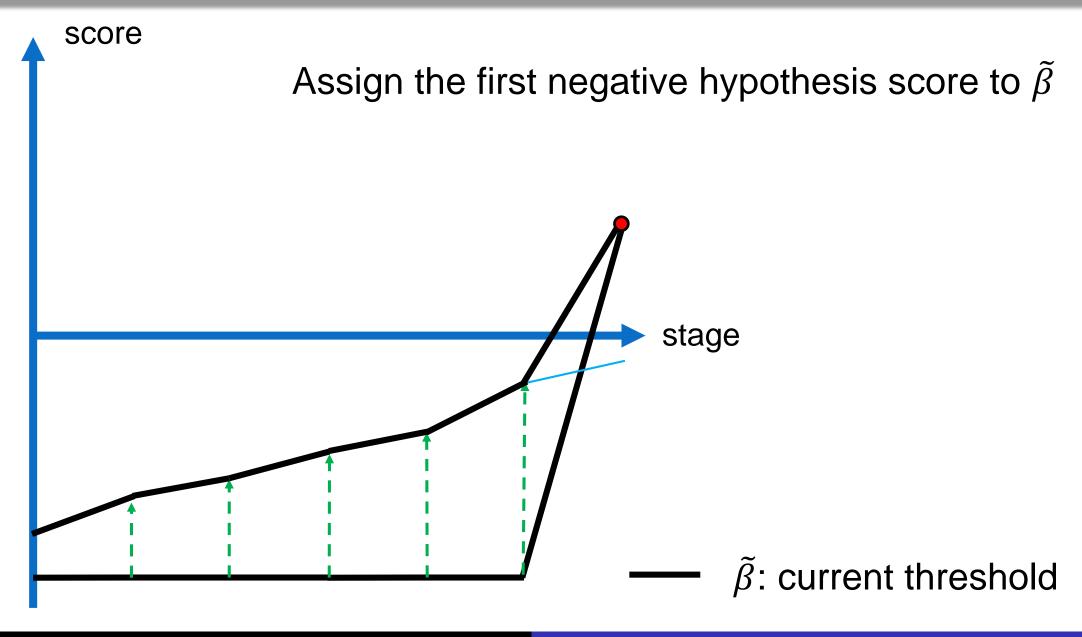
Hung VU

Property of Ω_c :

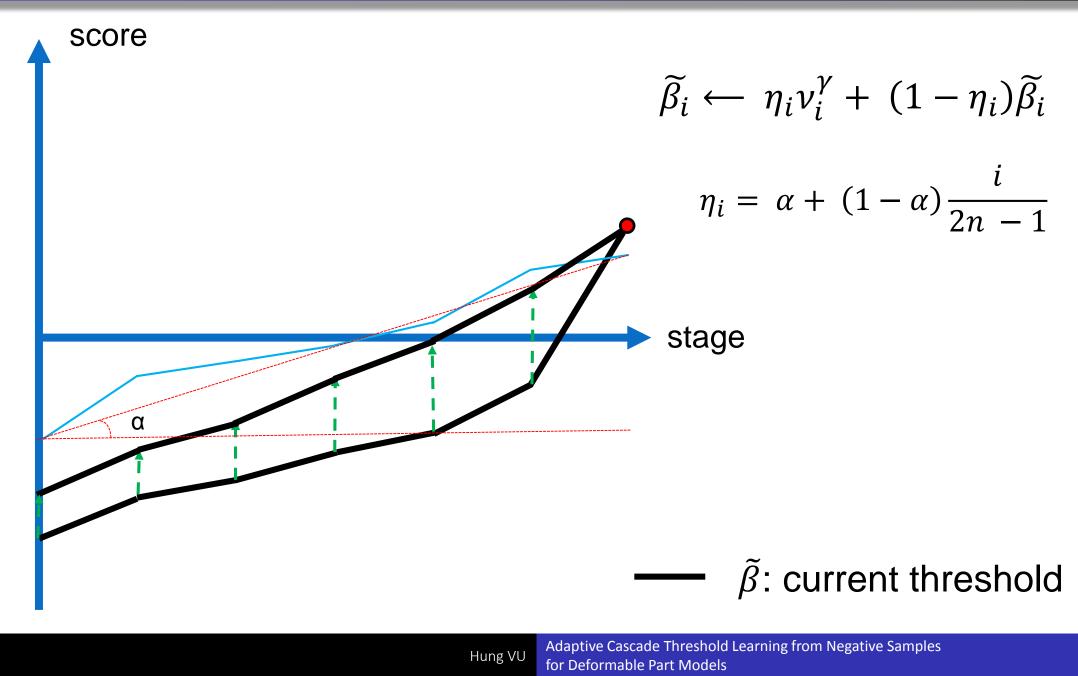
- F^{Ω_c} is close to and almost above $f(\beta)$
- Ω_c contains highest score negative hypotheses



Proposed Method



Proposed Method



Experiments

• Online ACTL

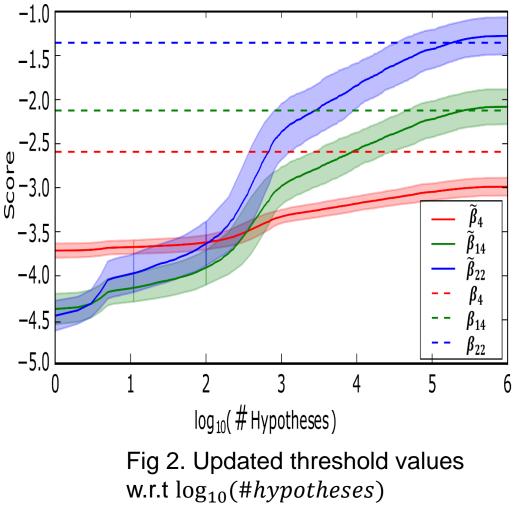
- Thresholds are equivalent to Cascade DPM
- The same performance
- But our methods have more advantages
 - Online threshold learning
 - Faster
 - No training data for threshold learning
- Trn ACTL (learning from negative samples)
 - Offline threshold learning can obtain the same level of quality (showing the similar performance with Cascade DPM and online ACTL)

Experiments: Online ACTL

 Our learned thresholds are equivalent to Cascade DPM threshold

Hung VU

- Average from 205 AFW images
- Updated thresholds:
 - Converges
 - is close to eta
- 94.47 updates for 10^6 hypotheses



Experiments: Online ACTL

- Online ACTL achieves the same performance
 - Compare with:
 - Cascade DPM
 - Neighbor Awareness Cascade [7]

	Cascade	NAC	onl-ACTL				
MAP	80.03	80.11	80.01				
Time	4.53	3.20	4.02				

Table 1. Results on AFW

MAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
Cascade	33.48	59.70	10.16	14.74	26.69	50.56	52.23	21.75	19.98	23.91	26.26	12.95	56.44	47.21	42.77	13.43	20.27	34.93	45.16	41.20	32.69
NAC	33.98	58.69	9.71	12.31	25.10	48.43	54.28	19.43	17.95	23.43	22.77	11.69	55.19	46.39	40.51	11.89	19.11	31.12	44.89	40.99	31.39
onl-ACTL	32.41	59.36	9.27	9.09	23.30	46.60	52.69	21.12	13.98	23.62	26.31	13.10	56.22	47.17	41.19	13.54	10.51	33.77	45.09	41.19	31.00
Det Time	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
Cascade	0.68	0.33	0.90	0.78	0.93	0.36	0.61	0.58	1.11	0.41	0.44	0.68	0.36	0.38	0.65	1.01	0.54	0.38	0.27	0.64	0.60
NAC	0.32	0.29	0.32	0.38	0.27	0.32	0.30	0.27	0.38	0.26	0.25	0.34	0.26	0.23	0.31	0.34	0.31	0.27	0.21	0.34	0.30
MAC	0.0-																				

Table 2. Results on PASCAL VOC 2007

Experiments: Trained ACTL

- Offline threshold learning can obtain the same level of quality
 - run ACTL through 20 negative images:
 - average updated thresholds
 - use average threshold instead of
 - β for testing

	Cascade	NAC	onl-ACTL	trn-ACTL
MAP	80.03	80.11	80.01	80.04
Time	4.53	3.20	4.02	4.66

Table 3. Results on AFW

MAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
Cascade	33.48	59.70	10.16	14.74	26.69	50.56	52.23	21.75	19.98	23.91	26.26	12.95	56.44	47.21	42.77	13.43	20.27	34.93	45.16	41.20	32.69
NAC	33.98	58.69	9.71	12.31	25.10	48.43	54.28	19.43	17.95	23.43	22.77	11.69	55.19	46.39	40.51	11.89	19.11	31.12	44.89	40.99	31.39
onl-ACTL	32.41	59.36	9.27	9.09	23.30	46.60	52.69	21.12	13.98	23.62	26.31	13.10	56.22	47.17	41.19	13.54	10.51	33.77	45.09	41.19	31.00
trn-ACTL	32.10	59.66	9.27	9.09	24.92	44.94	52.43	21.43	12.79	23.33	26.37	13.16	56.27	47.03	41.21	13.84	13.38	34.39	45.14	40.87	31.08
Det Time	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
Cascade	0.68	0.33	0.90	0.78	0.93	0.36	0.61	0.58	1.11	0.41	0.44	0.68	0.36	0.38	0.65	1.01	0.54	0.38	0.27	0.64	0.60
NAC	0.32	0.29	0.32	0.38	0.27	0.32	0.30	0.27	0.38	0.26	0.25	0.34	0.26	0.23	0.31	0.34	0.31	0.27	0.21	0.34	0.30
onl-ACTL	0.44	0.39	0.33	0.26	0.30	0.34	0.33	0.37	0.25	0.33	0.50	0.46	0.42	0.45	0.47	0.28	0.20	0.38	0.40	0.29	0.36
trn-ACTL	0 30	0.28	0 24	0 21	0 26	0 26	0 20	0.28	0.21	0.27	0.36	0 34	0.28	0.31	0 37	0 23	0.19	0.29	0.25	0.20	0.27

Table 4. Results on PASCAL VOC 2007

Conclusion

- This work investigated the capacity of learning threshold from negative samples for Cascade DPM.
- It allows to remove the dependence on positive training data but still obtain more efficient performance (compared to Cascade DPM and 2D-neighbour Cascade DPM) but maintain the same level of accuracy.
- Main contributions of the paper include:
 - Online threshold learning during detection phase.
 - Offline threshold learning with several negative images.

Reference

[1] Pedro F. Felzenszwalb, "Cascade object detection with deformable part models", CVPR 2010

[2] S Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D Mullin, and James M Rehg, "On the design of cascades of boosted ensembles for face detection", ICJV 2008

[3] Paul Viola and Michael Jones, "Rapid object detection using a boosted cascade of simple features", CVPR 2001

[4] Lubomir Bourdev and Jonathan Brandt, "Robust object detection via soft cascade", CVPR 2005

[5] Fan Yang, Wongun Choi, and Yuanqing Lin, "Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers", *CVPR* 2016

[6] Huitao Luo, "Optimization design of cascaded classifiers", CVPR 2005

[7] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z Li, "The fastest deformable part model for object detection", CVPR 2014

THANK YOU

