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Introduction

Input image Output image

Deformable Part B el Ak
Model (DPM) [1] pRoRN

@ DPMs describe the different views of an object via its components of
parts.

e Drawback: For detection process, the templates of these parts are
matched against all positions and scales = huge search space

- very slow

[1] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan, “Object detection
with discriminatively trained part-based models,” PAMI, vol. 32, no. 9, pp. 1627-1645, 2010.
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Related Work of DPM speed-up

@ Reduce the cost of feature extraction
a Feature pyramid (Piotr Dollar et al., 2014)
a0 Low-cost channel features (Piotr Dollar et al., 2009)
2 HOG with look-up tables (Junjie Yan et al., 2014)
- not resolve the primary bottleneck of massive cross-correlations

@ Reduce cross-correlation cost
2 FFT (Charles Dubout and Francois Fleuret, 2012)
a Branch and Bound (lasonas Kokkinos, 2011)
0 Root filters on low resolution image (Marco Pedersoli et al., 2015)

0 Cascade DPMs (Pedro F. Felzenszwalb et al., 2010; Junjie Yan et al.,
2014; Tianfu Wu and Song-Chun Zhu, 2015)
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Cascade DPM
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Cascade framework

@ Cascade frameworks have been popularized in Computer Vision
community by the seminal work of Paul Viola and Michael J. Jones,

2004 and

@ Other cascade frameworks (Dong Chen et al., 2016; Shuzhe Wu et al.,
2017; Hakan Cevikalp and Bill Triggs, 2017)
o Given a hypothesis/sub-window set of potential object position
o Remove non-object hypothesis as many as possible after each cascade stage

=2 All of them usually evaluate hypotheses individually

@ Recent works investigate the dependency between hypotheses in 2D
neighborhood (NAC [2] and Crosstalk cascade [3]).

[2] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z. Li, “The fastest Deformable Part Model for object detection,” in
CVPR, 2014, pp. 249/-2504.

[3] Piotr Dollar, Ron Appel, and Wolf Kienzle, “Crosstalk cascades for frame-rate pedestrian detection,” in ECCYV,
2012, pp. 645-659.




o We extend the idea of neighborhood cascade to the 3™ dimension of
scale to prune the hypotheses more aggressively.

@ This work introduces two technigues of 3D neighborhood pruning and
scale pruning.

0 3D neighborhood pruning

3D pruning

2D pruning
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o We extend the idea of neighborhood cascade to the 3™ dimension of
scale to prune the hypotheses more aggressively.

@ This work introduces two technigues of 3D neighborhood pruning and
scale pruning.

discarded

Q Scale pruning 7 /%, —

different scales

The same location, / 7

=>» Investigating the practicability of scale pruning
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Can we prune the hypotheses over scale?

@ We collected 1000 positive hypotheses randomly from 20 object
classes in the PASCAL VOC 2007 training dataset.
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Early prediction of optimal scale
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% true scale in the candidature list of K hypotheses with highest scores over state

o Forexample: T =2 and K = 2 2 919% true scale in the hypothesis list
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Proposed framework: Flexible 3D Neighbourhood Cascade DPM

Step 1: 3D pruning

Step 2: Level pruning Step 3:1D pruning

® survival O discard
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Existing DPM threshold pruning techniques

t
9¢) = @I ¢, D) + ) o] D) = df 6L 1o)
=1

e Hypothesis threshold pruning [1] a{:

prune y if g (y) < a;
o Deformation threshold pruning [1] a?:

prune y if g.(y) —di (¢, 1) < af
e Semi-positive threshold [4] a;:

oruney if Iy’ € N(¥), g:(¥") — g:(y) > a

[1] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan, “Object detection
with discriminatively trained part-based models,” PAMI, vol. 32, no. 9, pp. 1627-1645, 2010.
[4] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z. Li, “The fastest Deformable Part Model for object

detection,” in CVPR, 2014, pp. 2497-2504.

Flexible 3D Neighborhood Cascade 17
Deformable Part Models for Object Detection

Hung VU




Step 1: 3D Neighbourhood Pruning

@ 3D neighbour pruning operates in the first T stages:

prune N3p (Y)|if g:(y) < ai

@ N3p(y) is a square pyramid

o Thresholds a? and a; are also applied.

3D pruning
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Step 2: Scale Pruning

Whenever the stage T ends:
@ Project survival hypotheses into feature map of scale O
o Keep K hypotheses at the same locations

@ Run NMSy (non-maximum suppression) to remove ones which are
not in the top-K of the best hypotheses in its neighborhood.
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Step 1: 3D pruning Step 2: Level prunin, Step 3:1D pruning
®survival Odiscard
P ()
. 205%
1
t=0,....7

e From the stage t > 7, we use the hypothesis thresholds a} and
deformation thresholds a?

@ Pass the global threshold T
@ Run NMS to filter out the redundant detection results

satisfy a} and a?
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o We tested our proposal on two problems of face detection and object

detection.

@ Hardware: Intel Core i7 2.6 GHz desktop with 20 GB memory.

0 Object detection
Object Detection DPM Cascade NAC Flex3DNB
mAP (%) 3285 3269 3139 29.30
Detection Time (second) 1.14 0.60 0.30 0.19

Mean AP and detection time in PASCAL VOC 2017

a Face detection

Face Detection

TSPM EDEL DPM Cascade NAC Flex3DNB

mAP (%)

81.38 80.84 80.02 80.03 80.11  80.58

Detection Time (second)

4226 2329 1498 4.53 3.20 2.02

Mean AP and detection time AFW
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Conclusion

@ This work investigated the capacity of integrating the 3D
neighborhood information into Cascade DPM framework.

o It allows to obtain more efficient performance (compared to Cascade
DPM and 2D-neighbor Cascade DPM) but maintains the same level of
accuracy.

@ Main contributions of the paper include:
o 3D neighborhood cascade
o Scale pruning technique
o Flexible neighborhood: The volume of the neighborhood changes w.r.t. scores
@ Root score pruning (the first work to prune hypotheses at root stage)
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THANK YOU
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Question 1
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