ANALYSIS/SYNTHESIS CODING OF DYNAMIC TEXTURES BASED ON MOTION DISTRIBUTION STATISTICS

Olena Chubach, Patrick Garus, Mathias Wien, Jens-Rainer Ohm Institut für Nachrichtentechnik, RWTH Aachen University

Motivation

Highly textured parts: challenging for conventional codec but perceptually irrelevant for humans.

RNTHAACHEN

Fig. 1: Examples of dynamic textures content

- Viewer rather perceives semantic equivalence of displayed content than specific details
- Exact positions of the texture patterns are irrelevant for humans
- Therefore textures may be displayed without a pixel fidelity, instead of conventional coding
- This allows to omit encoding prediction residuals and motion vector coding of dynamic textures, leading to substantial reduction of bits to be coded

Motion-based Characterization of Dynamic Textures

- Dynamic textures are represented by a set of first order motion features computed along the space and time dimensions
- Motion vectors from 3 spatial and 2 temporal neighboring positions are considered for motion co-occurrence matrix (MCM), providing efficient representation of motion distribution in dynamic textures

Fig. 4: Proposed scheme of DT analysis/synthesis based on motion distribution statistics

- Initial MVF is estimated between adjacent reference frames
- Compressed MCM is signaled to the decoder side for synthesis
- Synthetic MVFs are predicted based on initial MVF and compressed MCM and utilized for generating intermediate frames
- Synthesis procedure is performed twice: in forward direction using frames from the past and in backward direction using frames from the future
 Corresponding synthesized frames *Î*^f_t and *Î*^b_t are then blended:

 $\hat{I}_t = (1 - \lambda(t))\hat{I}_t^f + \lambda(t)\hat{I}_t^b$

Modified Coding Structure

Results

- Proposed method tested on sequences from HomTex database, containing water, leaves and smoke
- Test sequences: 256x256 pixels in width and height; 250 frames; 25 or 60 fps
 Encoded with HEVC Test Model (HM-16.6) with modified RA config., QP=22
 sGOP size considered 16 frames
- 50% of the most probable MV combinations are kept for every sGOP
 MCMs and and MV interval ranges are compressed by arithmetic coding

Sequence	HEVC rate,	Synth, rate,	Rate
	CTC RA, [kb]	modif. RA, [kb]	reduction, %
BricksBushes	1744 5	766 1 + 5 7	-557
Static-Bushes1	1111.0	100.1 0.1	00.1
BricksBushes	1570 1	717 3 \perp 2 0	_55 /
Static-Bushes2	1013.1	111.0 ± 2.3	-00.4
LampLeaves	1578 0	798 3 _ 11 0	_52 1
Bushes1	1910.9	120.0 ± 11.9	-00.1
LampLeaves	11/6/	507 / + 5 / 1	51 0
Bushes2	1140.4	007.4 ± 04.1	-01.0
LampLeaves	1904 6	5/5 Q 195 5	17 1
Bushes3	1294.0	040.0 + 199.9	-41.4
LampLeaves	559 1	991 9 ± 7 5	17 0
BushesBackground	002.4	201.2 + 1.3	-41.0
PetibatoCropped	735.1	391.5 + 153.3	-25.9
TreeWills-Cropped	970.6	584.3 + 0.44	-39.8

Fig. 3: Modified coding structure in case of sGOP size 16

Frames 0, 1, 8, 9 and 16 are reference frames and reconstructed first
Remaining 12 frames are skipped during encoding/decoding and will be synthesized

Table 1: Rate comparison: 2nd column - HEVC CTC RA configuration; 3rd column - reference frames encoded with modified RA configuration (1st term); parameters required for synthesis, compressed by arithmetic coding (2nd

term); 4th column - rate reduction, under the assumption of acceptable quality drop

chubach@ient.rwth-aachen.de

www.ient.rwth-aachen.de

Institut für Nachrichtentechnik, Melatener Str. 23, 52074 Aachen

ICIP 2017