Semantic Segmentation with Multi-path Refinement and Pyramid Pooling Dilated-Resnet Zhipeng Cui, Qiao Zhang, Shijie Geng, Xiaoguang Niu, Yu Qiao Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China

Motivation:

- Resnet which has best performance on object recognition could also lose fine structure due to repeated 2-step striding convolution.
- It has been verified in classification network that if we put batch normalization and relu before the convolution unit, we can get better results through pre-activation, which could make optimization more efficiently and raise regularization in case of overfitting.
- Low-level features are very necessary for accurate high resolution semantic segmentation on the boundaries. PSPNet lacks in extracting intermediate layer information from lower blocks which can be solved by **RefineNet**.

Network Structures:

- A new segmentation framework based on ResNet-101 with new **dilated residual unit** illustrated in Figure. 1.
- > Multiple resolution of feature maps from intermediate layers are combined to refine the output precision.
- \succ The feature map from the last dilated residual unit is used as the input of **pyramid pooling**.

Figure 1. Network Architecture

BN-ReLU Dilated Residual Unit

 \succ When using regular convolution operations to extract features, it would diminish view of field, which could not entirely rebuilt by upsampling. Therefore, we employ dilated convolution in 3×3 stage of residual unit.

Figure 2. BN-ReLU Dilated ReLU Residual Unit

Pymraid Pooling Module

Figure 3. Pyramid Pooling

Global average pooling can be implemented to extract pooled context features from any layer. The final block in our network consists of higher semantic and global context information. So a pyramid of global average pooling connected to the final output can provide context information of multiple sub-regions.

Results

	CRFasRNN	FCN	Dilation	LRR	Deeplab	Ours
road	96.3	97.4	97.6	97.7	97.9	97.9
swalk	73.9	78.4	79.2	79.9	81.3	81.4
build.	88.2	89.2	89.9	90.7	90.3	90.1
wall	47.6	34.9	37.3	44.4	48.8	48.7
fence	41.3	44.2	47.6	48.6	47.4	59.0
pole	35.2	47.4	53.2	58.6	49.6	59.6
tlight	49.5	60.1	58.6	68.2	57.9	68.2
sign	59.7	65.0	65.2	72.0	67.3	75.2
veg.	90.6	91.4	91.8	92.5	91.9	92.3
terrain	66.1	69.3	69.4	69.3	69.4	63.8
sky	93.5	93.9	93.7	94.7	94.2	86.5
person	70.4	77.1	78.9	81.6	79.8	82.7
rider	34.7	51.4	55.0	60.0	59.8	63.5
car	90.1	92.6	93.3	94.0	93.7	95.2
truck	39.2	35.3	45.5	43.6	56.5	66.1
bus	57.5	48.6	53.4	56.8	67.5	83.7
train	55.4	46.5	47.7	47.2	57.5	67.8
mbike	43.9	51.6	52.2	54.8	57.7	65.0
bike	54.6	66.8	66.0	69.7	68.8	71.7
Mean IoU	62.5	65.3	67.1	69.7	70.4	74.7

Figure 4. Results

Table 1. Per-class and Mean IoU results on Cityscapes