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Abstract

We introduce the notion of semantic background subtraction, a novel
framework for motion detection in video sequences. The key innovation
consists to leverage object-level semantics to address the variety of chal-
lenging scenarios for background subtraction. Our framework combines
the information of a deep semantic segmentation network, expressed by a
probability for each pixel, with the output of any background subtraction
algorithm to reduce false positive detections produced by illumination
changes, dynamic backgrounds, strong shadows, and ghosts. In addi-
tion, it maintains a fully semantic background model to improve the
detection of camouflaged foreground objects. Experiments led on the
CDNet dataset show that we managed to improve, significantly, almost
all background subtraction algorithms of the CDNet leaderboard, and
reduce the mean overall error rate of all the 34 algorithms (resp. of the
best 5 algorithms) by roughly 50% (resp. 20%).
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Figure 1 : We present a framework that improves the binary segmentation maps
produced by background subtraction algorithms by leveraging object-level semantics
provided by a semantic segmentation algorithm.

Motivation
Our objective is to show the possibility of leveraging state of the art se-
mantic segmentation algorithms to improve the performance of BackGround
Subtraction (BGS) algorithms, without modifying them or accessing their
internal elements (e.g. their model and parameters). Our framework com-
pensates for the errors of any BGS algorithm by combining, at the pixel level,
its result B ∈ {BG, FG} with two signals (SBG and SFG) derived from the
semantics, as shown in Figure 1. While the first signal supplies the informa-
tion necessary to detect many BG pixels with high confidence, the second
helps to detect FG pixels reliably. The result of the combination is denoted
by D ∈ {BG, FG}.

Semantic probability computation

Let C = {c1, c2, ..., cN} be a set ofN disjoint object classes. We assume that
the semantic segmentation algorithm outputs a real-valued vector vt(x) =
[v1
t (x), v2

t (x), ..., vNt (x)], where vit(x) denotes a score for class ci at the pixel
location x at time t. The probabilities pt (x ∈ ci) are estimated by applying
a softmax function to vt(x). Our framework requires the definition of the
subset R (R ⊂ C) of all object classes semantically relevant for motion
detection problems. The semantic probability, which is the probability for a
particular pixel to belong to an object of interest, is defined and computed as

pS,t(x) = pt(x ∈ R) =
∑
ci∈R

pt (x ∈ ci)

Leveraging semantics to detect background pixels
.
It is possible to leverage semantics to detect background, as all pixels with
a low semantic probability value pS,t(x) should be labeled as background,
regardless of the decision Bt(x). Therefore, we compare the signal SBGt (x) =
pS,t(x) to a decision threshold τBG, as given by rule 1:

Rule 1: SBGt (x) ≤ τBG→ Dt(x) = BG . (1)
Rule 1 provides a simple way to address the challenges of illumination changes,
dynamic backgrounds, ghosts, and strong shadows, which severely affect the
performances of BGS algorithms by producing many false positive detections.

Leveraging semantics to detect foreground pixels

In order to help detecting the foreground, we have to use pS,t(x) in a different
way than for rule 1, as semantically relevant objects may be present in the
background (e.g. a car parked since the first frame of the video). To ac-
count for this possibility, our solution consists to maintain a purely semantic
background model for each pixel. More precisely, we denote by Mt(x) the
probability modeling the semantics of the background at the pixel x at time
t. This model allows to detect large increases of pS,t(x), observed when a
foreground object appears in front of a semantically irrelevant background
(e.g. a car moving on a road or a pedestrian walking in front of a building).
This leads us to the following decision rule:

Rule 2: SFGt (x) ≥ τFG→ Dt(x) = FG , (2)
with the signal SFGt (x) = pS,t(x)−Mt(x), and τFG denoting a second thresh-
old. Rule 2 aims at reducing the number of false negative detections due to
camouflage, i.e. when background and foreground share similar colors.

The BGS is used when semantics is not decisive

The semantic probability pS,t(x) alone does not suffice for motion detection.
If conditions of rules 1 and 2 are not met, which means that semantics alone
does not provide enough information to take a decision, we delegate the final
decision to the BGS algorithm: Dt(x) = Bt(x). The complete classification
process is summarized in Table 1.

Complete classification process

Bt(x) SBG
t (x) ≤ τBG SFG

t (x) ≥ τFG Dt(x)

BG false false BG
BG false true FG
BG true false BG
BG true true X
FG false false FG
FG false true FG
FG true false BG
FG true true X

Table 1 : Our combination of three signals for semantic BGS. Rows corresponding to
“don’t-care” values (X) cannot be encountered, assuming that τBG < τFG.

The importance of both rules should be emphasized. Rule 1 always leads
to the prediction of BG, so its use can only decrease the True Positive Rate
TPR and the False Positive Rate FPR, in comparison to the BGS algorithm
used alone. To the contrary, rule 2 always leads to the prediction of FG, and
therefore its use can only increase the TPR and the FPR. The objective of
improving both the TPR and the FPR can thus only be reached by the joint
use of both rules.

Experimental results
We applied our framework to the 34 BGS methods whose segmentation maps
(which directly provide the binary decisions Bt(x)) are available on the web-
site of the CDNet dataset for 53 video sequences organized in 11 categories.
We rely on the recent deep architecture PSPNet trained on the ADE20K
dataset to extract semantics. In order to show the effectiveness of our frame-
work, we compare the performances of BGS methods applied with or without
semantics. The improvement is defined as

improvement = ERBGS − ERBGS+SEM
ERBGS

, (3)

where ER denotes the mean Error Rate over a particular set of BGS methods
and a set of categories from the CDNet dataset. Per-category improvements
are detailed in Figure 2.
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Figure 2 : Mean improvements (see (3)) of our framework (with default thresholds).

As illustrated in Figure 2, we observe huge improvements for “Baseline”,
“Dynamic background”, “Shadow”, and “PTZ” categories. We manage to
reduce the mean overall error rate of all the 34 algorithms (resp. of the best 5
algorithms) by roughly 50% (resp. 20%). Figure 3 shows that our framework
tends to reduce significantly the FPR of BGS algorithms, while increasing
simultaneously their TPR.
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Figure 3 : Effect of our framework on the position of BGS classifiers in the overall ROC
space of the CDNet dataset, with default thresholds. It tends to reduce the FPR
significantly, while simultaneously increasing the TPR.

Figure 4 illustrates the benefits of our semantic background subtraction
framework for several challenging scenarios of real-world video sequences. It
reduces drastically the number of false positive detections caused by dynamic
backgrounds, ghosts, and strong shadows, while mitigating simultaneously
color camouflage effects.

Figure 4 : Our framework addresses robustly dynamic backgrounds (column 1), ghosts
(column 2), strong shadows (column 3) and camouflage effects (column 4). From top row
to bottom row: the input image, the probabilities pS,t(x), the output of IUTIS-5, the
output of IUTIS-5 integrated in our framework, and the ground truth.

Conclusion

We have presented a novel framework for motion detection in videos that
combines BackGround Subtraction (BGS) algorithms with two signals
derived from object-level semantics extracted by semantic segmentation.
The framework is simple and universal, i.e. applicable to every BGS algo-
rithm, because it only requires binary segmentation maps. Experiments
led on the CDNet dataset show that we managed to improve significantly
the performance of 34 BGS algorithms, by reducing their mean overall
error rate by roughly 50%.


