

LOOSECUT: INTERACTIVE IMAGE SEGMENTATION WITH LOOSELY BOUNDED BOXES

Hongkai Yu¹, Youjie Zhou¹, Hui Qian², Min Xian³, and Song Wang¹

¹ University of South Carolina ² Zhejiang University ³ Utah State University

Interactive image segmentation

- ➤ Interactive image segmentation has wide applications in computer vision community.
- ➤ However, the existing algorithms for interactive image segmentation prefer a bounding box that tightly encloses the object.
- ➤ Tight bounding box increases the annotation burden, and prevents these algorithms from utilizing automatically detected bounding boxes.

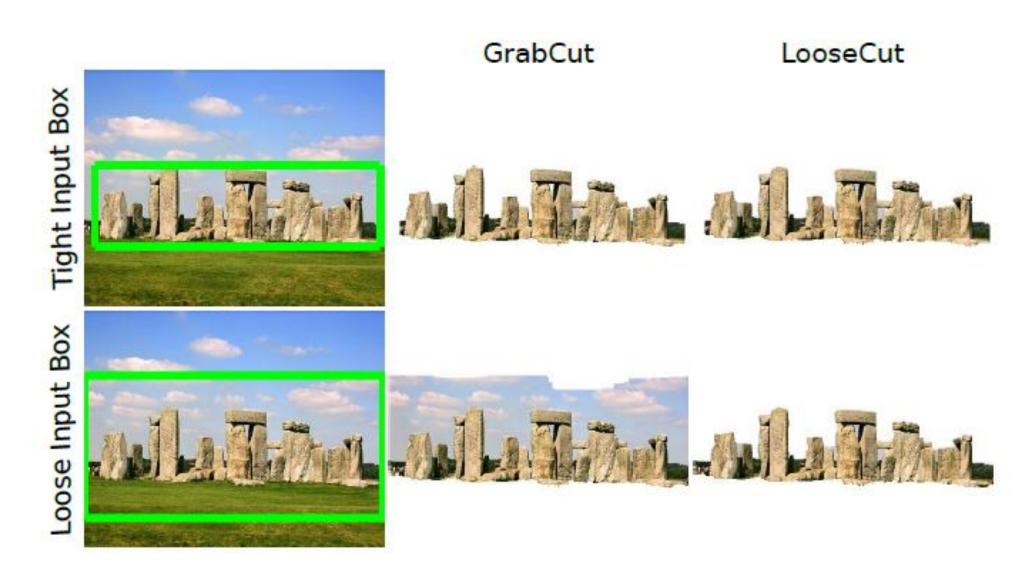


Fig. 1. Sample results from GrabCut and the proposed Loose-Cut with tightly and loosely bounded boxes.

Contributions

- In this paper, we develop a new LooseCut algorithm that can handle cases where the bounding box only loosely covers the object.
- We propose a new Markov Random Fields (MRF) model for segmentation with loosely bounded boxes, including an additional energy term to encourage consistent labeling of similar-appearance pixels and a global similarity constraint to better distinguish the foreground and background.

MRF Energy function

$$E(X,\theta) = E_{GC}(X,\theta) + \beta E_{LC}(X)$$

X: binary labels

heta : appearance f/b GMM models $heta = (M_f, M_b)$

 $E_{GC}(X,\theta)$: GrabCut Energy Term

 $E_{LC}(\mathbf{X})$: Label Consistency Energy Term

$$E_{LC}(\mathbf{X}) = \sum_{k} \sum_{i \in C_k} \phi(x_i \neq x_{C_k})$$

 $\phi(\cdot)$ is an indicator function

Idea: pixels in same cluster are encouraged to be set the same label.

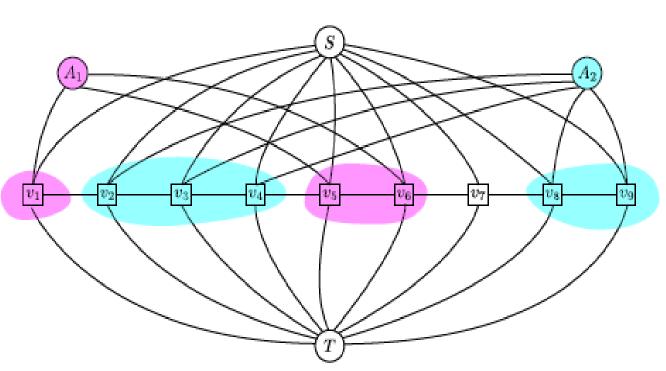


Fig. 2. Graph construction for the step of optimizing over X with a fixed θ . v_i 's are the nodes for pixels and A_i 's are the auxiliary nodes. S and T are the source and sink nodes. Same color nodes represent a cluster.

Global Similarity Constraint

Let M_f have K_f Gaussian components M_f^i with means μ_f^i , $i=1,2,\cdots,K_f$ and M_b have K_b Gaussian components M_b^j with means μ_b^j , $j=1,2,\cdots,K_b$.

$$Sim(M_f, M_b) = \sum_{i=1}^{K_f} S\left(M_f^i, M_b\right) \begin{cases} j(i) = \arg\min_{j \in \{1, \dots, K_b\}} \left| \mu_f^i - \mu_b^j \right| \\ S\left(M_f^i, M_b\right) = \frac{1}{\left| \mu_f^i - \mu_b^{j(i)} \right|} \end{cases}$$

Idea: foreground and background similarity is encouraged to be small.

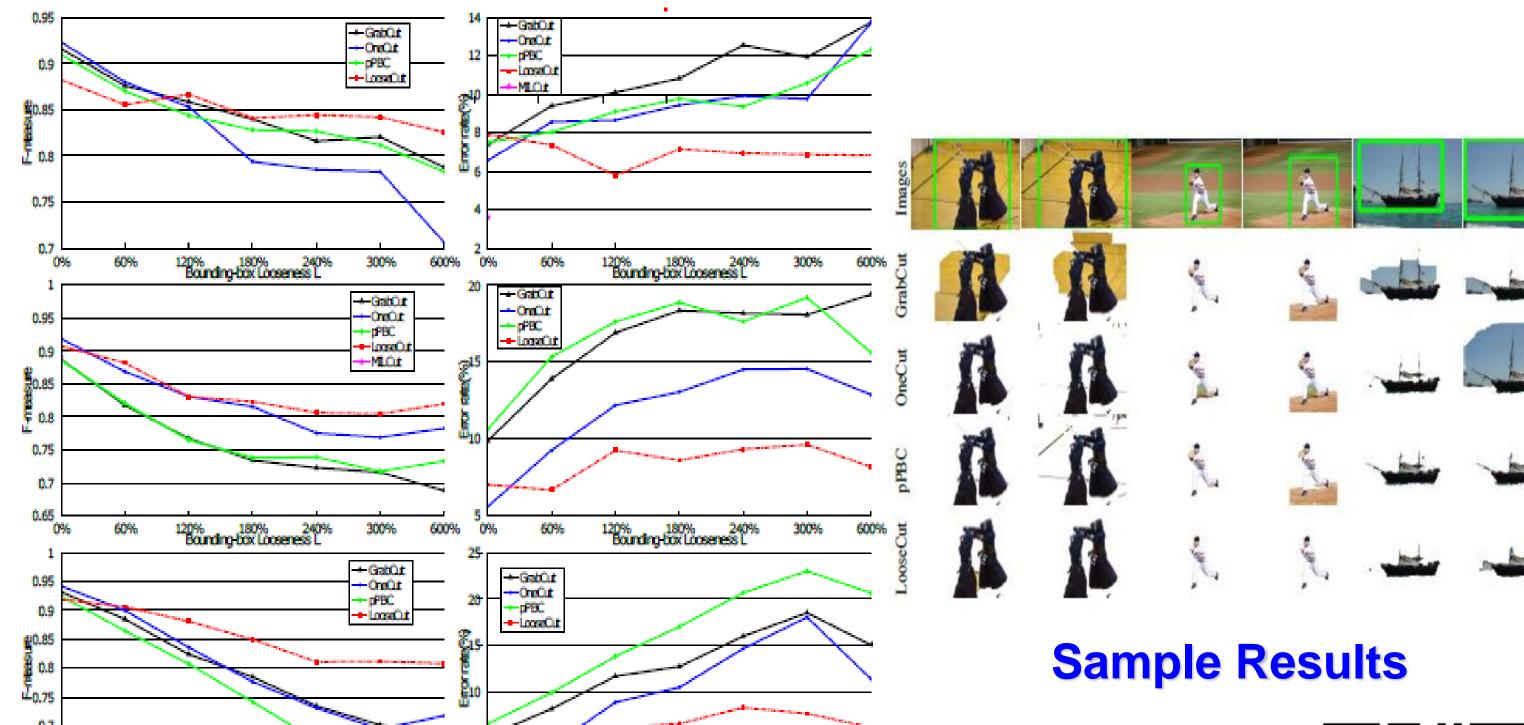
Algorithm

Algorithm 1 LooseCut

Input: Image I, bounding box B, # of clusters N Output: Binary labeling X to pixels in I

- 1: Construct N superpixel-based clusters.
- 2: Create initial labeling X using box B.
- 3: repeat
- Based on the current labeling X, estimate and update θ by enforcing $Sim(M_f, M_b) \leq \delta$.
- Construct the graph using the updated θ with N auxiliary nodes as shown in Fig. 2.
- 6: Apply the max-flow algorithm to update labeling X by minimizing $E(X, \theta)$.
- 7: until Convergence or maximum iterations reached

Experimental Results on datasets of GrabCut, Weizmann, iCoseg



Code will be released soon at: https://cvl.cse.sc.edu/research.html

