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We have conducted experiments on one publicly available video
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Fig. 3. Average accuracies using the DT feature.  Fig. 4. Average accuracies using the 1DT feature.
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selective sampling methods

Table 1. Comparison to other methods in terms of average
accuracy and feature size. * It leverages an advanced feature

Fig. 2. Illustration of selective sampling methods via object proposal algorithms. From left to right, the original video frame, encoding technique, stacked Fisher vector.
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