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LEARNING TO GENERATE IMAGES WITH PERCEPTUAL SIMILARITY METRICS

BACKGROUND

LEARNED REPRESENTATIONS

• Deep neural networks are increasingly being 
applied to image synthesis tasks.

• Supervised training typically uses a pixelwise-
loss (PL) to indicate the mismatch between a 
generated image and its corresponding target.

• We propose to use a loss function better 
calibrated to human perceptual judgments of 
image quality: the multiscale structural-
similarity score (MS-SSIM) [1].

• Differentiable, compatible with SGD

• Human observers tend to prefer images 
synthesized by MS-SSIM-optimized models 
over PL-optimized models.

• We found MS-SSIM improves image super-
resolution and can also lead to better 
representations for image classification.

• Takeaway: training objectives should be aligned 
to characteristics of human perception.

• An autoencoder is a common image synthesis network with two components.

• Encoder: compresses an image into a feature vector (typically low dimension).

• Decoder: reconstructs the original image from the bottleneck representation.

• Bottleneck representation may be useful for auxiliary tasks, including classification.

• Loss function quantifies mismatch between reconstruction and target. REFERENCES
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• We propose to use the multiscale structural-similarity score (MS-SSIM) [1] as 
a loss function for training image synthesis networks.

• MS-SSIM compares luminance (I), contrast (C), and structure (S) of local 
neighborhoods of pixels:

• Luminance is applied at the coarsest scale, while contrast and structure are 
computed at multiple scales resulting from iteratively downsampling:

• Image synthesis networks are trained to minimize negative MS-SSIM over all 
image pixels:

• We trained convolutional autoencoders on grayscale images from the STL-10 
dataset (96 x 96 pixels).

• After training, we collected judgments of perceptual quality on Amazon 
Mechanical Turk to assess whether human observers prefer reconstructions 
from pixelwise-loss or perceptually-optimized networks.

• We collected 1,000 rankings (20 participants each ranked 50 images).

• MS-SSIM appears to better capture fine details than MSE or MAE. 
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Image reconstructions by a standard 
approach (left) and ours (right). The 

compression factor is high to 
emphasize the differences.
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Distribution of image 
quality rankings on 1,000 
held-out STL-10 images.

Images where MS-SSIM 
reconstruction ranked 

first.

Images where MS-SSIM 
reconstruction ranked 

second or third.

• We compared the learned representations by training conv. autoencoders on 
grayscale images from the Yale B face dataset (48 x 48 pixels).

• SVMs were trained on top of bottleneck representations to predict identity, 
azimuth, and elevation.

• Results suggest that MS-SSIM yields better encodings of low- and mid-level 
visual features such as edges and contours. 

Loss Identity Azimuth Elevation
MSE 5.60% 277.46 51.46
MAE 5.60% 325.19 50.23

MS-SSIM 3.53% 234.32 35.60

Table 1. Test error for SVMs trained on bottleneck represen-
tations of convolutional autoencoders for Yale B. Classifica-
tion error is the evaluation metric for identity prediction; MSE
is the evaluation metric for azimuth and elevation prediction.

We opted to investigate this prediction task as opposed
to a more straightforward task (such as STL-10 classifica-
tion accuracy) because we expect MS-SSIM to obtain supe-
rior encodings of low- and mid-level visual features such as
edges and contours. Indeed, initial studies showed only mod-
est benefits of MS-SSIM for STL-10 classification accuracy,
where coarse classification (e.g., plane versus ship) does not
require fine image detail. The resulting test performance (Ta-
ble 1) demonstrate that MS-SSIM yields more robust repre-
sentations of relevant image factors than MSE and MAE.

5. IMAGE SUPER-RESOLUTION

We also apply our perceptual loss to the task of super-
resolution (SR) imaging. As a baseline model, we use a
state-of-the-art SR method, the SRCNN [24]. We used the
SRCNN architecture determined to perform best in [24]. It
consists of 3 convolutional layers and 2 fully connected lay-
ers of ReLUs, with 64, 32, and 1 filters in the convolutional
layers, from bottom to top, and filter sizes 9, 5, and 5. All the
filters coefficients are initialized with draws from a zero-mean
Gaussian with standard deviation 0.001.

We construct a training set in a similar manner as [24]
by randomly cropping 5 million patches (size 33 ⇥ 33) from
a subset of the ImageNet dataset of [25]. We compare three
different loss functions for the SRCNN: MSE, MAE and
MS-SSIM. Following [24], we evaluate the alternatives uti-
lizing the standard metrics PSNR and SSIM. We tested 4⇥
SR with three standard test datasets—Set5 [26], Set14 [27]
and BSD200 [28]. All measures are computed on the Y
channel of YCbCr color space, averaged over the test set. As
expected (Table 2), MSE performs best on PSNR because
they are equivalent. However, MS-SSIM achieves a PSNR
comparable to that of MSE, and outperforms other loss func-
tions significantly in the SSIM measure. Close-up visual
illustrations are provided in the supplementary materials.

6. DISCUSSION AND FUTURE WORK

We have investigated the consequences of replacing pixel-
wise loss functions, MSE and MAE, with perceptually-
grounded loss functions, SSIM and MS-SSIM, in neural
networks that synthesize and transform images. Human ob-

Bicubic MSE MAE MS-SSIM
SET5 PSNR 28.44 30.52 29.57 30.35

SSIM 0.8097 0.8621 0.8350 0.8681
SET14 PSNR 26.01 27.53 26.82 27.47

SSIM 0.7018 0.7512 0.7310 0.7610
BSD200 PSNR 25.92 26.87 26.47 26.84

SSIM 0.6952 0.7378 0.7220 0.7484

Table 2. Super-resolution imaging results.

servers consistently judge SSIM-optimized images to be of
higher quality than PL-optimized images. We also found
that perceptually-optimized representations are better suited
for predicting content-related image attributes. Finally, our
promising results on single-image super-resolution highlight
one of the key strengths of perceptual losses: they can easily
be applied to current state-of-the-art architectures by simply
substituting in for a pixel loss such as MSE. Taken together,
our results support the hypothesis that the MS-SSIM loss
encourages networks to encode relevant low- and mid-level
structure in images. We conjecture that the MS-SSIM trained
representations may even be useful for fine-grained classifi-
cation tasks, in which small details are important.

A recent manuscript [29] also proposed using SSIM and
MS-SSIM as a training objective for image processing neural
networks. In this manuscript, the authors evaluate alternative
training objectives based not on human judgments, but on a
range of image quality metrics. They find that MAE outper-
forms MSE, SSIM, and MS-SSIM on their collection of met-
rics, and not surprisingly, that a loss which combines both PL
and SSIM measures does best—on the collection of metrics
which include PL and SSIM measures. Our work goes further
in demonstrating that perceptually-grounded losses attain bet-
ter scores on the definitive assessment of image quality: that
registered by the human visual cortex.

Given our encouraging results, it seems appropriate to in-
vestigate other perceptually-grounded loss functions. SSIM
is the low-hanging fruit because it is differentiable. Nonethe-
less, even black-box loss functions can be cached into a for-
ward model neural net [30] that maps image pairs into a qual-
ity measure. We can then back propagate through the forward
model to transform a loss derivative expressed in perceptual
quality into a loss derivative expressed in terms of individ-
ual output unit activities. This flexible framework will allow
us to combine multiple perceptually-grounded loss functions
and additionally refine any perceptually-grounded loss func-
tions with data obtained from human preference judgments,
such as those we collected in the present set of experiments.
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• We used our perceptual loss to perform image super-resolution using the 
architecture of the SRCNN [2], a state-of-the-art SR method.

• Architecture consists of 3 conv. layers and 2 fully-connected layers of ReLUs 
with 64, 32, and 1 filters in conv. layers and filter sizes of 9, 5 and 5.  

• Trained on 5 million patches randomly cropped from a subset of the 
ImageNet dataset.

Loss Identity Azimuth Elevation
MSE 5.60% 277.46 51.46
MAE 5.60% 325.19 50.23

MS-SSIM 3.53% 234.32 35.60

Table 1. Test error for SVMs trained on bottleneck represen-
tations of convolutional autoencoders for Yale B. Classifica-
tion error is the evaluation metric for identity prediction; MSE
is the evaluation metric for azimuth and elevation prediction.

We opted to investigate this prediction task as opposed
to a more straightforward task (such as STL-10 classifica-
tion accuracy) because we expect MS-SSIM to obtain supe-
rior encodings of low- and mid-level visual features such as
edges and contours. Indeed, initial studies showed only mod-
est benefits of MS-SSIM for STL-10 classification accuracy,
where coarse classification (e.g., plane versus ship) does not
require fine image detail. The resulting test performance (Ta-
ble 1) demonstrate that MS-SSIM yields more robust repre-
sentations of relevant image factors than MSE and MAE.

5. IMAGE SUPER-RESOLUTION

We also apply our perceptual loss to the task of super-
resolution (SR) imaging. As a baseline model, we use a
state-of-the-art SR method, the SRCNN [24]. We used the
SRCNN architecture determined to perform best in [24]. It
consists of 3 convolutional layers and 2 fully connected lay-
ers of ReLUs, with 64, 32, and 1 filters in the convolutional
layers, from bottom to top, and filter sizes 9, 5, and 5. All the
filters coefficients are initialized with draws from a zero-mean
Gaussian with standard deviation 0.001.

We construct a training set in a similar manner as [24]
by randomly cropping 5 million patches (size 33 ⇥ 33) from
a subset of the ImageNet dataset of [25]. We compare three
different loss functions for the SRCNN: MSE, MAE and
MS-SSIM. Following [24], we evaluate the alternatives uti-
lizing the standard metrics PSNR and SSIM. We tested 4⇥
SR with three standard test datasets—Set5 [26], Set14 [27]
and BSD200 [28]. All measures are computed on the Y
channel of YCbCr color space, averaged over the test set. As
expected (Table 2), MSE performs best on PSNR because
they are equivalent. However, MS-SSIM achieves a PSNR
comparable to that of MSE, and outperforms other loss func-
tions significantly in the SSIM measure. Close-up visual
illustrations are provided in the supplementary materials.

6. DISCUSSION AND FUTURE WORK

We have investigated the consequences of replacing pixel-
wise loss functions, MSE and MAE, with perceptually-
grounded loss functions, SSIM and MS-SSIM, in neural
networks that synthesize and transform images. Human ob-
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SET5 PSNR 28.44 30.52 29.57 30.35

SSIM 0.8097 0.8621 0.8350 0.8681
SET14 PSNR 26.01 27.53 26.82 27.47

SSIM 0.7018 0.7512 0.7310 0.7610
BSD200 PSNR 25.92 26.87 26.47 26.84

SSIM 0.6952 0.7378 0.7220 0.7484

Table 2. Super-resolution imaging results.

servers consistently judge SSIM-optimized images to be of
higher quality than PL-optimized images. We also found
that perceptually-optimized representations are better suited
for predicting content-related image attributes. Finally, our
promising results on single-image super-resolution highlight
one of the key strengths of perceptual losses: they can easily
be applied to current state-of-the-art architectures by simply
substituting in for a pixel loss such as MSE. Taken together,
our results support the hypothesis that the MS-SSIM loss
encourages networks to encode relevant low- and mid-level
structure in images. We conjecture that the MS-SSIM trained
representations may even be useful for fine-grained classifi-
cation tasks, in which small details are important.

A recent manuscript [29] also proposed using SSIM and
MS-SSIM as a training objective for image processing neural
networks. In this manuscript, the authors evaluate alternative
training objectives based not on human judgments, but on a
range of image quality metrics. They find that MAE outper-
forms MSE, SSIM, and MS-SSIM on their collection of met-
rics, and not surprisingly, that a loss which combines both PL
and SSIM measures does best—on the collection of metrics
which include PL and SSIM measures. Our work goes further
in demonstrating that perceptually-grounded losses attain bet-
ter scores on the definitive assessment of image quality: that
registered by the human visual cortex.

Given our encouraging results, it seems appropriate to in-
vestigate other perceptually-grounded loss functions. SSIM
is the low-hanging fruit because it is differentiable. Nonethe-
less, even black-box loss functions can be cached into a for-
ward model neural net [30] that maps image pairs into a qual-
ity measure. We can then back propagate through the forward
model to transform a loss derivative expressed in perceptual
quality into a loss derivative expressed in terms of individ-
ual output unit activities. This flexible framework will allow
us to combine multiple perceptually-grounded loss functions
and additionally refine any perceptually-grounded loss func-
tions with data obtained from human preference judgments,
such as those we collected in the present set of experiments.
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• Performed 4x SR with all 
measures are computed on the Y 
channel of YCbCr color space.

• MS-SSIM achieves comparable 
PSNR to MSE and outperforms 
other losses significantly in the 
SSIM measure.
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