UNIVERSITY OF TORONTO VECTOR INSTITUTE

- Deep neural networks are increasingly being applied to image synthesis tasks.
- Supervised training typically uses a pixelwiseloss (PL) to indicate the mismatch between a generated image and its corresponding target.
- We propose to use a loss function better calibrated to human perceptual judgments of image quality: the multiscale structuralsimilarity score (MS-SSIM) [1].
- Differentiable, compatible with SGD
- Human observers tend to prefer images synthesized by MS-SSIM-optimized models over PL-optimized models.
- We found MS-SSIM improves image superresolution and can also lead to better representations for image classification.
- Takeaway: training objectives should be aligned to characteristics of human perception.

- An autoencoder is a common image synthesis network with two components.

- Loss function quantifies mismatch between reconstruction and target.

LEARNING TO GENERATE IMAGES WITH PERCEPTUAL SIMILARITY METRICS

Jake Snell^{1,2}, Karl Ridgeway³, Renjie Liao^{1,2}, Brett D. Roads³, Michael C. Mozer³, Richard S. Zemel^{1,2} ¹University of Toronto, ²Vector Institute, ³University of Colorado, Boulder

PERCEPTION-BASED ERROR METRICS

• We propose to use the multiscale structural-similarity score (MS-SSIM) [1] as

• MS-SSIM compares luminance (I), contrast (C), and structure (S) of local

$$(y) = \frac{2\sigma_x\sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2} \quad S(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x\sigma_y + C_3}$$

• Luminance is applied at the coarsest scale, while contrast and structure are computed at multiple scales resulting from iteratively downsampling:

$$M(x,y)^{\alpha_M} \prod_{j=1}^M C_j(x,y)^{\beta_j} S_j(x,y)^{\gamma_j}$$

• Image synthesis networks are trained to minimize negative MS-SSIM over all

$$Y) = -\sum_{i} \text{MS-SSIM}(X_i, Y_i)$$

AUTOENCODER RECONSTRUCTIONS

• We trained convolutional autoencoders on grayscale images from the STL-10

- After training, we collected judgments of perceptual quality on Amazon Mechanical Turk to assess whether human observers prefer reconstructions
- We collected 1,000 rankings (20 participants each ranked 50 images).
- MS-SSIM appears to better capture fine details than MSE or MAE.

Images where MS-SSIM reconstruction ranked second or third.

Distribution of image quality rankings on 1,000 held-out STL-10 images.

- azimuth, and elevation.

- ImageNet dataset.
- Performed 4x SR with all channel of YCbCr color space.
- MS-SSIM achieves comparable SSIM measure.

	Bicubic	MSE	MAE	MS-SSIM
SET5 PSNR	28.44	30.52	29.57	30.35
SSIM	0.8097	0.8621	0.8350	0.8681
SET14 PSNR	26.01	27.53	26.82	27.47
SSIM	0.7018	0.7512	0.7310	0.7610
BSD200 PSNR	25.92	26.87	26.47	26.84
SSIM	0.6952	0.7378	0.7220	0.7484

[1] Z.Wang, E.P. Simoncelli, and A.C. Bovik. "Multi-scale structural similarity for image quality assessment," IEEE Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 9–13, 2003.

University of Colorado Boulder

LEARNED REPRESENTATIONS

• We compared the learned representations by training conv. autoencoders on grayscale images from the Yale B face dataset (48 x 48 pixels).

• SVMs were trained on top of bottleneck representations to predict identity,

• Results suggest that MS-SSIM yields better encodings of low- and mid-level visual features such as edges and contours.

Loss	Identity	Azimuth	Elevation
MSE	5.60%	277.46	51.46
MAE	5.60%	325.19	50.23
MS-SSIM	3.53%	234.32	35.60

IMAGE SUPER-RESOLUTION

• We used our perceptual loss to perform image super-resolution using the architecture of the SRCNN [2], a state-of-the-art SR method.

• Architecture consists of 3 conv. layers and 2 fully-connected layers of ReLUs with 64, 32, and 1 filters in conv. layers and filter sizes of 9, 5 and 5.

• Trained on 5 million patches randomly cropped from a subset of the

measures are computed on the Y

PSNR to MSE and outperforms other losses significantly in the

MSE

MAE

REFERENCES

[2] C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE TPAMI, vol. 38, no. 2, pp. 295–307, 2016.