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Introduction Contextual Comparison Pipeline Results and Observations

* We leverage the power of wide-scale image

Contextual Method Performance Under No Perturbation
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search to find contextual clues in related media. D robe Search Results
These clues allow us to more accurately detect -\ mage
and localize forgeries in tampered images. We )

test our method using the Nimble Challenge
2016 dataset[1], provided by NIST, with millions
of distractor images provided by RankOne[2].

* We develop and analyze the performance of 4
novel image comparison technigues to extract
contextual clues in the presence of synthetic
noise and perturbation, to analyze robustness to
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1
Max, P
IFILTTE

TAR

iii) Transform Calculations

- Histogram Patches AUC=0.93101
—— PRNU Noise AUC=0.89376

PatchMatch 2.1 AUC=0.93529
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PDIF Methods [7-19], max AUC =0.6221
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