PERSON RE-IDENTIFICATION WILILH DEEPDENSEFEATURE REPRESENTATION AND

ABSTRACT

Person re-identification that aims at matching individuals across
multiple camera views has become indispensable 1n intelligent
video surveillance systems. It remains challenging due to the large
variations of pose, illumination, occlusion and camera viewpoint.
Feature representation and metric learning are the two
fundamental components in person re-identification.

In this paper, we present a Special Dense Convolutional Neural
Network (SD-CNN) to extract the feature and apply Joint
Bayesian to measure the similarity of pedestrian image pairs. The
SD-CNN can preserve more horizontal information to against
viewpoint changes, maximize the feature reuse and ensure feature
distributing discriminative. Joint Bayesian models the extracted
feature representation as the sum of inter- and intra-personal
variations, and the joint probability of two 1images being a same
person can be obtained through log-likelihood ratio. Experiments
show that our approach significantly outperforms state-of-the-art
methods on several benchmarks of person re-identification.
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Fig. 1. The overview of our framework

We propose a novel framework (See Fig. 1) to solve person
re-identification problem that including a SD-CNN feature
extractor and a Joint Bayesian model for distance metric.

The proposed Special Dense Convolutional Neural Network
(SD-CNN) architecture can outperform majority of existing
deep learning extractor for person re-identification. Basing on our
efficient SD-CNN feature, we applied Joint Bayesian to person
Re-ID problem for the first time and get a 2% performance
improvement.
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SD-CNN STRUCTURE FOR FEATURE EXTRACTION
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Fig. 2. The SD-CNN structure for feature extraction. Note that
the red box is the example of dense block(DB).
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An 1llustration of the SD-CNN structure 1s shown 1n Fig. 2.

Compared with DenseNet[1], our SD-CNN has the following
characteristics:

(D Due to the pose variations of one pedestrian across different
views, the local features appearing in one views may not
exactly at the same position in the other view while its very
similar along the same horizontal region. Therefore, we use
asymmetric filtering in some critical convolution layers to
preserve the horizontal features.

(® Mmount of 1 x 1 convolution are employed to reduce the
dimension, interact and integrate the information across
channels, and increase the nonlinear characteristics.

(3 Softmax loss function can supervise feature distributing
discriminative, for propagating this constraint better we
abandon the activation function between the Feature layer
and last full connected layer.

The network 1s trained to minimize the cross-entropy loss by
using the stochastic gradient descent search, combined with
error back-propagation.
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where f 1s the feature vector, y 1s the target class, and 6,; denotes
the softmax layer parameters. p; is the true probability distribution
that p,= 0 for all i except p,= 1 for the target class y , g; 1s the
predicted probability distribution.
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JOINT BAYESIAN FOR DISTANCE METRIC

We learned the Joint Bayesian model for distance metric based on
the extracted SD-CNN feature. Follow the Joint Bayesian [2], the
feature of a pedestrian image can be represent as the sum of
inter- and intra-personal variations:

X=u+¢

where u and ¢ follow two Gaussian distributions N(0, S, ) and
N(0, S, ) can be estimated from the training data.

Given the features of image pairs {x; x,}, extracted by SD-
CNN from two 1images, Let H,; represents the intrapersonal (same)
hypothesis that two 1images belong to the same person, and Hp is
the extra-personal (not same) hypothesis, then the person re-1d
problem amounts to classifying the difference A = x; — x, as intra-
personal variation or extra-personal variation. Based on the
MAP(Maximum a Posterior) rule, the distance is made by
testing a log-likelihood ratio :

P(A|Hp)

T T T
— xl Axl + x2 AX2 — 2x1 GX2
P(A|Hp)

d(x;,x,)=log

Where A and G can be estimated by the algorithm in Table 1

Tabel 1. The Joint Bayesian learning algorithm. Assume there
are n identities and each identity has mi images.

While not converge do
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Update the parameters S: by S. = = > > ;6L
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end while
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RESULTS

We present a comprehensive evaluation of our framework by
comparing it against the baseline SD-CNN feature with Euclidean
distance as well as other state-of-art methods for person re-

identification. All evaluations 1s based on the Cumulative
Matching Characteristics (CMC).

Compared with deep learning
methods, our SD-CNN features
with simple Euclidean distance
casily bests the other methods
in CUHKO03[3] dataset, and
with the improvements of our
Joint Bayesian, our framework
achieves the state-of-the-art
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However, for small dataset
CUHKO1[5], 1t would be
insufficient to learn such a large
capacity network from scratch,
our framework with SD-CNN
and Joint Bayesian fail to
achieve the best result

25 (compared with DNS [6]). But
SEEEEEEEE RN compared with others our

method get the best result.
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CONCLUSIONS

This paper proposed a novel framework for person
reidentification, 1t consist of a convolutional neural network
extractor named SD-CNN and metric measure named Joint
Bayesian. Experiments shown that our framework achieved state-
of-the-art result in several dataset.
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