Instance Flow Based Online Multiple Object Tracking

sebastian.bullinger@iosb.fraunhofer.de | 19.09.2017

Instance Flow Based Online Multiple Object Tracking

Approach

Approach

- I. Computation of instance-aware semantic segmentations
- II. Computation of optical flow
- III. Prediction of instance-aware semantic segmentations using optical flow
- IV. Computation of an affinity matrix of predictions and instance segmentations
- V. Computation of segmentation associations with Kuhn-Munkres algorithm
- VI. Update tracker state using segmentation associations

Semantic Segmentation S_t of Image I_t

- $S_t(x,y) = (c,i)$
 - c = category id, i = object instance id
- Occupied Pixels of Instance i in frame t

$$S_{t,i} = \{(x, y) \mid (x, y) \in \{1, \dots, w\} \times \{1, \dots, h\}, S_t(x, y) = (c, i)\}$$

Valid optical flow positions of instance i

 $\blacksquare \quad F_{t,i}^{(\nu)} = S_{t,i} \cap F_t^{(\nu)}$

$$F_{t,i}^{(v)} = S_{t,i} \cap F_t^{(v)}$$

$$\blacksquare \quad F_{t,i}^{(v)} = S_{t,i} \ \cap \ F_t^{(v)}$$

$$\blacksquare \quad F_{t,i}^{(v)} = S_{t,i} \cap F_t^{(v)}$$

$$F_{t,i}^{(v)} = S_{t,i} \cap F_t^{(v)}$$

$$F_{t,i}^{(v)} = S_{t,i} \cap F_t^{(v)}$$

- Interpolation of optical flow at positions where no flow information is available
 - Linear interpolation inside the convex hull of $F_t^{(v)}$
 - Nearest neighbor interpolation outside of the convex hull of $F_t^{(v)}$

- Interpolation of optical flow at positions where no flow information is available
 - Linear interpolation inside the convex hull of $F_t^{(v)}$
 - Nearest neighbor interpolation outside of the convex hull of $F_t^{(v)}$

- Interpolation of optical flow at positions where no flow information is available
 - Linear interpolation inside the convex hull of $F_t^{(v)}$
 - Nearest neighbor interpolation outside of the convex hull of $F_t^{(v)}$

Prediction of pixel positions of instance *i*

$$P_{t \to t+o,i} = \left\{ \left(x_p, y_p \right) \mid \left(x_p, y_p \right) = (x, y) + F_{t \to t+o}(x, y), (x, y) \in F_{t,i}^{(\nu)} \right\}$$

Apply a morphological closing operation as post processing

IV. Affinity and Correspondence of Objects in Subsequent Frames

Similarity between object *i* in frame *I_t* and object *j* in frame *I_{t+o}*

 $S_{t+o,i}$

- Overlap $O_{i,j}$ of $P_{t \rightarrow t+o,i}$ and $S_{t+o,j}$
- Usage of overlap O as similarity / affinity measure
- Similarity measure O_{i,j} reflects
 - Locality
 - Visual similarity

IV. Affinity and Correspondence of Objects in Subsequent Frames

• Overlap
$$O_{i,j}$$
 of $P_{t \to t+o,i}$ and $S_{t+o,j}$

Affinity / Similarity matrix

$$\mathbf{A} = \begin{bmatrix} O_{1,1} & \cdots & O_{1,j} & \cdots & O_{1,n_j} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ O_{i,1} & \cdots & O_{i,j} & \cdots & O_{i,n_j} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ O_{n_i,1} & \cdots & O_{n_i,j} & \cdots & O_{n_i,n_j} \end{bmatrix}$$

Computation of corresponding objects using the Kuhn-Munkres algorithm

Instance Flow Based Online Multiple Object Tracking: Tracker State

Tracker state T_t at time t

- consists of a a set of segmentation instances $S_{t,k}$
 - With a unique identifier $id_{t,k}$
 - With a counter for the number of successive missing detections $m_{t,k}$

$$T_t = \{ (S_{t,k}, id_{t,k}, m_{t,k} \mid k \in \{1, \dots, n_t\}) \}$$

• With the number of tracks n_t at time t

Instance Flow Based Online Multiple Object Tracking: Algorithm

- Initialize tracker state with segmentation instances of frame 0
- For subsequent frames
 - Compute instance-aware semantic segmentation (I)
 - Compute optical flow for current and previous image (II)
 - Predict segmentations $S_{t,k}$ using (III)
 - Solve associations (IV)
 - Building affinity matrix of predicted segmentations $S_{t,k}$ of the current tracker state and segmentations $S_{t+1,j}$ found in the current frame
 - Update matching tracker segmentations $S_{t,k}$ with corresponding segmentations $S_{t+1,j}$
 - Remove dead tracks
 - Update non-matching tracker segmentations $S_{t,k}$ with corresponding predictions
 - Create new tracks for unmatched segmentations $S_{t+1,j}$

Evaluation: References

- Instance-aware semantic segmentation
 - MNC: Instance-Aware Semantic Segmentation via Multi-Task Network Cascades, Dai et al., CVPR 2016
- Optical Flow / Dense Matching
 - PolyExp: Two-frame motion estimation based on polynomial expansion, Farnebäck, SCIA 2003
 - DeepMatch: Deepmatching: Hierarchical deformable dense matching, Revaud et al., IJCV 2016
 - CPM: Efficient Coarse-to-Fine PatchMatch for Large Displacement Optical Flow, Hu et al., CVPR 2016
- Multiple Object Tracking
 - SORT: Simple Online and Realtime Tracking, Alex Bewley et al., ICIP 2016

Evaluation

MOT 2D 2015 Benchmark Test Set Evaluation

Method	md *	MOTA ↑	MOTP ↑
FasterRNN + SORT	-	33.4	72.1
MNC + SORT	-	27.5	70.5
MNC + CPM (ours)	0	30.6	71.3
MNC + CPM (ours)	1	32.1	70.9

- FasterRNN outperforms MNC in terms of detection rates
- Our approach outperforms SORT using same detection

*md = missing detections

Evaluation

MOT 2015 Benchmark KITTI-13 Evaluation

Method	md	MOTA ↑	MOTP ↑
MNC + SORT	-	12.9	65.2
MNC + CPM (ours)	0	18.6	67.2
MNC + CPM (ours)	1	19.2	66.7
MNC + DeepMatch (ours)	0	18.6	67.2
MNC + DeepMatch (ours)	1	16.9	66.8
MNC + PolyExp (ours)	0	16.8	67.3
MNC + PolyExp (ours)	1	11.7	66.8

Our method handles high object and camera motion better than SORT

Quality of optical flow matters!

Evaluation

Prediction using CPM

Prediction using PolyExp

Conclusion

We presented a MOT approach

- Which combines optical flow and semantic segmentation to compute object correspondences in subsequent frames
- Which is able to track the two-dimensional shape of objects
- The quality of the optical flow algorithm shows its importance for sequences with high object translation
- Detection vs. Tracking
 - Difficult to solely evaluate tracking performance
 - In many benchmark settings the overall performance is stronger influenced by the detector than the tracker

Instance Flow Based Online Multiple Object Tracking

